Course Summary

I. Introduction
II. Single component systems
III. Solutions
IV. Phase diagrams
V. Phase stability
VI. Surfaces
VII. Heat of formation
VIII. Heat capacity
IX. Solution models and equations of state
X. Thermodynamics and materials modeling
XI. Experimental methods

Course Summary

I. Introduction:

Define Terms;
Basic Definitions;
Gibbs Thompson;
Hess' Law (not path dependent);
Second law and reversibility;
Equilibrium;
Third law $\mathrm{T}=0 \mathrm{~K}$ Boltzmann equation;
Legendre transform;
Maxwell equations;
Gibbs-Duhem equation (Gibbs phase rule)

What happens to the energy when I heat a material?
 Or How much heat, $\mathbf{d q}$, is required to change the temperature dT? (Heat Capacity, C)

$$
\begin{aligned}
& \mathrm{dq}=\mathrm{CdT} \\
& \mathrm{C}=\mathrm{dq} / \mathrm{dT}
\end{aligned}
$$

```
-S U V
H A
-P G T
```

Constant Volume, C_{V} $d U=d q+d w$ With only pV work (expansion/contraction), $\mathrm{dw}_{\mathrm{ec}}=-\mathrm{pdV}$ $d U=d q-p d V$
For constant volume
$(d U)_{V}=d q$, so
$\mathrm{C}_{\mathrm{V}}=(\mathrm{dU} / \mathrm{dT})_{\mathrm{V}}$, or the energy change with $\mathrm{T}:(\mathrm{dU})_{\mathrm{V}}=\mathrm{C}_{\mathrm{V}} \mathrm{dT}$
Constant Pressure, C_{p}
$d U=d q+d w=d q-p d V(o n l y e / c$ work, i.e. no shaft work)
Invent Entropy $\mathrm{H}=\mathrm{U}+\mathrm{PV}$ so $\mathrm{dH}=\mathrm{dU}+\mathrm{pdV}+\mathrm{Vdp}$ $(\mathrm{dH})_{\mathrm{p}}=\mathrm{dU}+\mathrm{pdV}$ for constant pressure
With only pV work (expansion/contraction), $\mathrm{dw}_{\mathrm{ec}}=-\mathrm{pdV}$
$\mathrm{dq}=\mathrm{dU}+\mathrm{pdV}=(\mathrm{dH})_{\mathrm{p}}$
$C_{p}=(d H / d T)_{p}$, or the enthalpy change with $T:(d H)_{p}=C_{p} d T$

> Constant Volume
> Computer Simulation
> Helmholtz Free Energy, A
> $\mathrm{A}=\mathrm{U}-\mathrm{TS}=\mathrm{G}-\mathrm{pV}$

Constant Pressure
Atmospheric Experiments
Gibbs Free Energy, G
$\mathrm{G}=\mathrm{H}-\mathrm{TS}=\mathrm{A}+\mathrm{pV}$

Size dependent enthalpy of melting (Gibbs-Thompson Equation)

For bulk materials, $\mathrm{r}=\infty$, at the melting point $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T}_{\infty} \Delta \mathrm{S}=0$
So, $T_{\infty}=\Delta H / \Delta S$ Larger bonding enthalpy leads to higher T_{∞}, Greater randomness gain on melting leads to lower T_{∞}.

For nanoparticles there is also a surface term, $(\Delta \mathrm{G}) \mathrm{V}=\left(\Delta \mathrm{H}-\mathrm{T}_{\mathrm{r}} \Delta \mathrm{S}\right) \mathrm{V}+\sigma \mathrm{A}=0$, where T_{r} is the melting point for size r nanoparticle
If $\mathrm{V}=\mathrm{r}^{3}$ and $\mathrm{A}=\mathrm{r}^{2}$ and using $\Delta \mathrm{S}=\Delta \mathrm{H} / \mathrm{T}_{\infty}$ this becomes,
$\mathrm{r}=\sigma /\left(\Delta \mathrm{H}\left(1-\mathrm{T}_{\mathrm{r}} / \mathrm{T}_{\infty}\right)\right)$ or $\mathrm{T}_{\mathrm{r}}=\mathrm{T}_{\infty}(1-\sigma /(\mathrm{r} \Delta \mathrm{H})$
Smaller particles have a lower melting point, and the dependence suggests a plot of T_{r} / T_{∞} against $1 / r$

Derive the expression for $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{V}}$

$$
\begin{aligned}
& C_{p}-C_{v}=\alpha^{2} V T / \kappa_{T} \\
& \alpha=(1 / V)(d V / d T)_{p} \\
& \kappa_{T}=(1 / V)(d V / d P)_{T}
\end{aligned}
$$

H

$$
-p
$$

$C_{V}=(d U / d T)_{V}$
From the Thermodynamic Square
$d U=T d S-p d V$ so $C_{V}=(d U / d T)_{V}=T(d S / d T)_{V}-p(d V / d T)_{V}$
Second term is 0 dV at constant V is 0
$(d S / d T)_{V}=C_{V} / T$
Similarly
$C_{p}=(d H / d T)_{p}$
From the Thermodynamic Square
$d H=T d S+V d p$ so $C_{p}=(d H / d T)_{p}=T(d S / d T)_{p}-V(d p / d T)_{p}$
Second term is $0 d p$ at constant p is 0
$(d S / d T)_{p}=C_{p} / T$
Write a differential expression for $d S$ as a function of T and V
$d S=(d S / d T)_{V} d T+(d S / d V)_{T} d V$ using expression for C_{V} above and Maxwell for $(d S / d V)_{T}$
$d S=C_{V} / T d T+(d p / d T)_{V} d V$ use chain rule: $(d p / d T)_{V}=-(d V / d T)_{p}(d P / d V)_{T}=V \alpha /\left(V \kappa_{T}\right)$
Take the derivative for $C_{p}: C_{p} / T=(d S / d T)_{p}=C_{V} / T(d T / d T)_{p}+\left(\alpha / \kappa_{T}\right)(d V / d T)_{p}=C_{V} / T+\left(V \alpha^{2} / \kappa_{T}\right)$
$\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\alpha^{2} \mathrm{VT} / \kappa_{\mathrm{T}}$

Gibbs-Duhem Equation

$$
G=\sum_{i} n_{i}\left(\frac{\partial G}{\partial n_{i}}\right)_{T, p, n n_{j+i}}=\sum_{i} n_{i} \bar{G}_{i}=\sum_{i} n_{i} \mu_{i}
$$

Consider a binary system A +B makes a solution

$$
\begin{aligned}
& G=n_{\mathrm{A}} \mu_{\mathrm{A}}+n_{\mathrm{B}} \mu_{\mathrm{B}} \\
& \mathrm{~d} G=n_{\mathrm{A}} \mathrm{~d} \mu_{\mathrm{A}}+\mathrm{d} n_{\mathrm{A}} \mu_{\mathrm{A}}+n_{\mathrm{B}} \mathrm{~d} \mu_{\mathrm{B}}+\mathrm{d} n_{\mathrm{B}} \mu_{\mathrm{B}}
\end{aligned}
$$

Fundamental equation with chemical potential:

$$
\mathrm{d} G=-S \mathrm{~d} T+V \mathrm{~d} p+\sum \mu_{i} \mathrm{~d} n_{i}
$$

At constant T and p :

$$
\mathrm{d} G=\mu_{\mathrm{A}} \mathrm{~d} n_{\mathrm{A}}+\mu_{\mathrm{B}} \mathrm{~d} n_{\mathrm{B}}
$$

So, at constant T and p :

$$
n_{\mathrm{A}} \mathrm{~d} \mu_{\mathrm{A}}+n_{\mathrm{B}} \mathrm{~d} \mu_{\mathrm{B}}=0 \quad \text { i.e. } \quad \sum_{i} n_{i} \mathrm{~d} \mu_{i}=0
$$

Reintroducing the T and p dependences:

$$
S \mathrm{~d} T-V \mathrm{~d} p+\sum_{i} n_{i} \mathrm{~d} \mu_{i}=0
$$

Intensive properties are not independent, T, p, μ
For I components, only I-1 have independent properties (Gibbs phase rule) if T and p are variable.

Determine partial molar quantities at equilibrium from number of moles

Partial vapor pressure from total vapor pressure

Clausius-Clapeyron Equation

Consider two phases at equilibrium, α and β

$$
\begin{aligned}
& \text {-S U V } \\
& \text { H A } \\
& d \mu_{\alpha}=d \mu_{\beta} \quad d G=V d p-S d T \\
& \text {-p G T } \\
& \text { so } \\
& V^{\alpha} d p-S^{\alpha} d T=V^{\beta} d p-S^{\beta} d T \\
& \text { so } \\
& \mathrm{dp}_{\text {trans }} / \mathrm{dT}=\Delta \mathrm{S} / \Delta \mathrm{V} \\
& \text { and } \\
& \Delta \mathrm{G}=0=\Delta \mathrm{H}-\mathrm{T}_{\text {trans }} \Delta \mathrm{S} \text { so } \Delta \mathrm{S}=\Delta \mathrm{H} / \mathrm{T}_{\text {trans }} \\
& \text { and } \\
& \mathrm{dp}_{\text {trans }} / \mathrm{dT}=\Delta \mathrm{H} /\left(\mathrm{T}_{\text {trans }} \Delta \mathrm{V}\right) \text { Clapeyron Equation } \\
& \text { For transition to a gas phase, } \Delta \mathrm{V} \sim \mathrm{~V} \text { gas } \\
& \text { and for low density gas (ideal) } \mathrm{V}=\mathrm{RT} / \mathrm{p} \\
& d\left(\operatorname{lnp}_{\text {vap }}\right) / \mathbf{d T}=\Delta \mathbf{H}_{\text {vap }} /\left(\mathbf{R T}_{\text {vap }}{ }^{2}\right) \text { Clausius-Clapeyron Equation }
\end{aligned}
$$

This allows calculation of the vapor pressure as a function of T

Course Summary

II. Single Component Systems:
First order transition;
Clausius-Clapeyron equation (vapor pressure calculation);
Second order transition;
Virial equation of state for phase diagram;
Phase diagram P vs T (Gibbs phase rule)
Fugacity;
Van der Waals equation (Cubic equation of state);
CALPHAD and PREOS programs

Clausius-Clapeyron Equation

$\mathbf{d}\left(\ln \mathbf{p}^{\text {Sat }}\right) / \mathbf{d T}=\Delta \mathbf{H}_{\text {vap }} /\left(\mathbf{R T}_{\text {vap }}{ }^{2}\right)$ Clausius-Clapeyron Equation
$d\left(\ln p^{\text {Sat }}\right)=\left(-\Delta H_{\text {vap }} / R\right) d(1 / T)$ So, plot $\ln p^{\text {Sat }}$ vs $1 / T$
$\ln \left[p^{\text {Sat }} / p_{C}{ }^{\text {Sat }}\right]=\left(-\Delta H_{\text {vap }} / R\right)\left[1 / T-1 / T_{C}\right]$ Use the critical point as the reference state
Shortcut Vapor Pressure Calculation:

$$
\log _{10} P_{r}^{\text {sat }}=\frac{7}{3}(1+\omega)\left(1-\frac{1}{T_{r}}\right)
$$

Like the Van't Hoff Equation for Reaction Equilibria so escape of an ideal gas from liquid state is like a chemical reaction equilibria

Consider a chemical reaction with equilibrium constant $\mathrm{K}_{\text {eq }}$

$$
\begin{array}{ll}
& -S U V \\
d \mu_{\alpha}=d \mu_{\beta} & H \text { H } \\
& -p G T
\end{array}
$$

$$
\begin{aligned}
& \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} \\
& \Delta \mathrm{G}=-\mathrm{RT} \ln \mathrm{~K}_{\mathrm{eq}} \\
& \text { So } \ln \mathrm{K}_{\mathrm{eq}}=-\Delta \mathrm{H} / \mathrm{RT}+\Delta \mathrm{S} / \mathrm{R} \\
& \text { Take derivative relative to T } \\
& \mathrm{d}\left(\ln \mathrm{~K}_{\mathrm{eq}}\right)=\Delta \mathrm{H} / \mathrm{RT}^{2} \mathrm{dT} \quad \text { Van't Hoff Equation So, plot } \ln \mathrm{K}_{\mathrm{eq}} \mathrm{vs} 1 / \mathrm{T}
\end{aligned}
$$

Can determine $\Delta \mathrm{H}$ from the mole fraction of reactants and products

Clausius Clapeyron Equation
$d\left(\ln p^{\text {Sat }}\right)=\left(-\Delta H_{\text {vap }} / R\right) d(1 / T)$
$\ln \left[p^{\text {Sat }} / p_{R}{ }^{\text {Sat }}\right]=\left(-\Delta H_{\text {vap }} / R\right)\left[1 / T-1 / T_{R}\right]$

$$
\ln \left[p^{\mathrm{Sat}} / \mathrm{p}_{\mathrm{R}}{ }^{\text {Satt }]}=\left(-\Delta \mathrm{H}_{\text {vap }} / \mathrm{R}\right)\left[1 / \mathrm{T}-1 / \mathrm{T}_{\mathrm{R}}\right]\right.
$$

$$
\log _{10} P_{r}^{s a t}=\frac{7}{3}(1+\omega)\left(1-\frac{1}{T_{r}}\right)
$$

This is similar to the Arrhenius Plot

Figure 9.1. Plot to evaluate Clausius-Clapeyron for calculation of vapor pressures at high pressures, argon (left) and ethane (right).
$\alpha=(1 / \mathrm{V})(\mathrm{dV} / \mathrm{dT})_{\mathrm{p}}$ $\kappa_{T}=(1 / \mathrm{V})(\mathrm{dV} / \mathrm{dP})_{T}$

What About a Second Order Transition?

For Example: Glass Transition T_{g} versus P?

There is only one "phase" present. A flowing phase and a "locked-in" phase for T_{g}. There is no discontinuity in $\mathrm{H}, \mathrm{S}, \mathrm{V}$
$d V=0=(d V / d T)_{p} d T+(d V / d p)_{T} d p=V \alpha d T-V \kappa_{T} d p$
$\mathrm{dp} / \mathrm{dT}_{\mathrm{g}}=\Delta \alpha / \Delta \mathrm{K}_{\mathrm{T}}$
T_{g} should be linear in pressure.

Second order transition Neel Temperature (like Curie Temp for antiferromagnetic)

Inden Model $\tau=T / T_{\text {tr }}$
For $\tau<1$

$$
C_{p}^{\mathrm{mag}}=K^{\mathrm{L}} R \frac{\ln \left(1+\tau^{3}\right)}{\ln \left(1-\tau^{3}\right)}
$$

For $\tau>1$

$$
C_{p}^{\mathrm{mag}}=K^{\mathrm{S}} R \frac{\ln \left(1+\tau^{5}\right)}{\ln \left(1-\tau^{5}\right)}
$$

Figure 2.13 Heat capacity of wüstite around the Néel temperature [19]. O: $\mathrm{Fe}_{0.99} \mathrm{O}$; •: $\mathrm{Fe}_{0.947} \mathrm{O} ; \nabla: \mathrm{Fe}_{0.938} \mathrm{O} ;+: \mathrm{Fe}_{0.925} \mathrm{O}$. Reproduced by permission of the Mineralogical Society of America.

Single Component Phase Diagrams

Isochoric phase diagram

Figure 2.7 The p, T phase diagram of $\mathrm{H}_{2} \mathrm{O}$ (the diagram is not drawn to scale).

For a single component, an equation of state relates the variables of the system, PVT

Gibbs Phase Rule

$$
\begin{equation*}
F=C-P h+2 \tag{2.15}
\end{equation*}
$$

In Chapter 4 the determination of the number of components in complex systems will be discussed in some detail. In this chapter we shall only consider single-component systems. For a single-component system, such as pure $\mathrm{H}_{2} \mathrm{O}, C=1$ and $F=3$ $-P h$. Thus, a single phase $(P h=1)$ is represented by an area in the p, T diagram and the number of degrees of freedom F is 2 . A line in the phase diagram represents a heterogeneous equilibrium between two coexisting phases $(P h=2)$ and $F=1$, while three phases $(P h=3)$ in equilibrium are located at a point, $F=0$.

$$
\mathrm{Z}=1 \quad \mathrm{P}=\mathrm{RT} / \mathrm{V} \quad \text { Ideal Gas Equation of State }
$$

Van der Waals Equation of State

$$
\begin{aligned}
\begin{array}{cc}
P=\frac{R T}{V-b}-\frac{a}{V^{2}} & \text { Cubic Equation of State } \\
\mathrm{P}=\mathrm{RT} \rho /(1-\mathrm{b} \rho)-\mathrm{a} \rho^{2} & Z=\frac{P V}{R T}
\end{array} & \begin{array}{ll}
a=\frac{27}{64} \frac{\left.R T_{c}\right)^{2}}{P_{c}} & b=\frac{R T_{c}}{8 P_{c}}
\end{array} \quad\left(\frac{\partial p}{\partial V}\right)_{T_{c}}=\left(\frac{\partial^{2} p}{\partial V^{2}}\right)_{T_{c}}=0 \\
Z=1+Z^{r e p}+Z^{a t t} & =1+\frac{b \rho}{1-b \rho}-\frac{a \rho}{R T}
\end{aligned}
$$

$Z=1+B \rho+C \rho^{2}+D \rho^{3}+\ldots \quad$ Virial Equation of State

$$
B(T)=b-\frac{a}{R T} .
$$

Peng-Robinson Equation of State (PREOS)

$$
\begin{gathered}
P=\frac{R T \rho}{(1-b \rho)}-\frac{a \rho^{2}}{1+2 b \rho-b^{2} \rho^{2}} \text { or } Z=\frac{1}{(1-b \rho)}-\frac{a}{b R T} \cdot \frac{b \rho}{1+2 b \rho-b^{2} \rho^{2}} \\
Z=1+Z^{r e \rho}+Z^{a t t}=1+\frac{b \rho}{1-b \rho}-\frac{a}{b R T} \cdot \frac{b \rho}{1+2 b \rho-b^{2} \rho^{2}} \\
Z^{3}-(1-B) Z^{2}+\left(A-3 B^{2}-2 B\right) Z-\left(A B-B^{2}-B^{3}\right)=0 \quad \text { Cubic Equation of State }
\end{gathered}
$$

Solve cubic equations (3 roots)

Figure 1.3 Ideal gas behavior at five temperature.

Figure 7.5 Illustration of the prediction of isotherms by the Peng-Robinson equation
of state for $\mathrm{CO}_{2}\left(T_{c}=304.2 \mathrm{~K}\right)$ at $275 \mathrm{~K}, 290 \mathrm{~K}, 300 \mathrm{~K}, 310 \mathrm{~K}, 320 \mathrm{~K}$, and 350 K .
Higher temperatures result in a high pressure for a given volume. The "humps"
are explained in the text. The calculated vapor pressures are 36.42 bar at 275 K
53.2 bar at 290 K , and 67.21 bar at 300 K

Landau theory for 2'nd order transitions

The order parameter Γ could be concentration (normal phase separation), magnetization (magnets), orientation (LCs) The point is to find a value for Γ above and below the critical point T_{c} (where phase separation become possible). Particularly above $T_{\mathrm{c}}, \Gamma=0$ and we have no "order" (think of no magnetization above the Curie temperature or no deviation from the average composition ($\rho-\langle\rho\rangle$) above the critical temperature).
-The free energy is analytic (there is a function in Γ and T)
-The free energy F is symmetric in Γ (only even powers of Γ)
For simplicity, take a two term Taylor series expansion $\Delta F=a(T) \Gamma^{2}+b(T) / 2 \Gamma^{4}$
Near the critical temperature assume for simplicity

For a solution to Γ, you must have $b_{0}>0$ (this is obvious below); and $a(T)$ must change sign for phase separation to occur at T_{c} so $a(T)=a_{0}\left(T_{\mathrm{c}}-T\right)$

At the critical point $\partial \mathrm{F} / \partial \Gamma=0=2 a_{0}\left(T_{\mathrm{c}}-T\right) \Gamma_{0}+2 b_{0} \Gamma_{0}{ }^{3}$
To minimize free energy and make a stable phase either $\Gamma_{0}=0$ (above T_{c}) or $\Gamma_{0}{ }^{2}=-a_{0}\left(T_{\mathrm{c}}-T\right) / b_{0}$ (for $T \leq T_{\mathrm{c}}$) For $T \leq T_{\mathrm{c}}, \Gamma_{0} \sim\left(T_{\mathrm{c}}-T\right)^{1 / 2}$ The critical exponent is $1 / 2$ for Landau theory.

Course Summary

III. Solutions:

Ideal mixing;
Real solutions;
Activity and activity coefficient;
Excess Gibbs free energy;
Raoult's Law and Henry's Law;
Hildebrand Model;
Hildebrand del parameter;
Asymmetric models (Redlich-Kister Expression);
Gibbs-Duhem for Solutions;

An "Ideal Solution" means:

The change on mixing:
$\Delta S=-n k_{B}\left(x_{A} \ln \left(x_{A}\right)+x_{B} \ln \left(x_{B}\right)\right)$
Since $(\ln x)$ is always negative or $0, \Delta S$ is always positive for ideal solutions
$\Delta G=-T \Delta S$
Since ($\ln x$) is always negative or $0, \Delta G$ is always negative (or 0) and ideal solutions always mix
ΔH is 0 , there is no interaction in ideal mixtures, there is no excluded volume, particles are ghosts to each other $\Delta V=(\mathrm{d} \Delta \mathrm{G} / \mathrm{dp})_{\mathrm{T}}=0$, there is no loss or gain of volume compared to the summed volume

Real Solutions

x_{A} becomes a_{A} the activity so

$$
\Delta G_{\text {mixing }}=R T\left(x_{A} \ln a_{A}+x_{A} \ln a_{B}\right)
$$

$$
\text { Excess } \Delta G_{\text {mixing }}=\Delta G_{\text {mixing }}-R T\left(x_{A} \ln x_{A}+x_{B} \ln x_{B}\right)
$$

$$
=R T\left(x_{A} \ln \left(a_{A} / x_{A}\right)+x_{B} \ln \left(a_{B} / x_{B}\right)\right)
$$

$$
=\operatorname{RT}\left(x_{A} \ln \left(\gamma_{A}\right)+x_{B} \ln \left(\gamma_{B}\right)\right)
$$

γ Is the activity coefficient

$$
\text { Excess } \Delta S_{\text {mixing }}=-R\left(x_{A} \ln \left(\gamma_{A}\right)+x_{B} \ln \left(\gamma_{B}\right)\right)
$$

Method to use departure functions for calculations (PREOS.xIs)

1) Calculation of properties in the ideal state is simple
2) With an equation of state, the departure function can be calculated
3) For any transition first calculate the departure function to the ideal state
4) Then carry out the desired change as an ideal mixture or gas
5) Then use the departure function to return to the real state

Hildebrand Regular Solution Model

The change on mixing:
$\Delta S=-n k_{B}\left(x_{A} \ln \left(x_{A}\right)+x_{B} \ln \left(x_{B}\right)\right)$ Ideal Solution
Since ($\ln x$) is always negative or $0, \Delta S$ is always positive for ideal solutions
$\Delta G=\Delta H-T \Delta S$
Since ($\ln x$) is always negative or $0, \Delta G$ is positive or negative depending on ΔH :: can mix or demix
Depending on the sign of ΔH
$\Delta V=(d \Delta G / d p)_{T}=0$, there is no loss or gain of volume compared to the summed volume
$\Delta \mathrm{H}=\mathrm{n} \Omega \mathrm{x}_{\mathrm{A}} \mathrm{x}_{\mathrm{B}}$
Ω is the interaction coefficient or regular solution constant

The equation is symmetric
Figure 3.10 The molar Gibbs energy of mixing of a regular solution A-B for different values of $\Omega / R T$.

Asymmetric equations for asymmetric phase diagram

Sub-regular solution model

$$
\begin{gathered}
\Delta_{\operatorname{mix}}^{\operatorname{exc}} G_{\mathrm{m}}=x_{\mathrm{A}} x_{\mathrm{B}}\left(A_{21} x_{\mathrm{A}}+A_{12} x_{\mathrm{B}}\right) \\
\Delta_{\operatorname{mix}}^{\operatorname{exc}} G_{\mathrm{m}}=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{\mathrm{A}}^{i} x_{\mathrm{B}}^{j} A_{i j}
\end{gathered}
$$

Redlich-Kister Expression

$$
\begin{aligned}
\Delta_{\operatorname{mix}}^{\operatorname{exc}} G_{\mathrm{m}}= & x_{\mathrm{A}} x_{\mathrm{B}}\left[\Omega+A_{1}\left(x_{\mathrm{A}}-x_{\mathrm{B}}\right)+A_{2}\left(x_{\mathrm{A}}-x_{\mathrm{B}}\right)^{2}\right. \\
& \left.+A_{3}\left(x_{\mathrm{A}}-x_{\mathrm{B}}\right)^{3}+\ldots\right]
\end{aligned}
$$

Use of the Gibbs-Duhem Equation to determine the activity of a component

$$
\begin{aligned}
& n_{\mathrm{A}} \mathrm{~d} \mu_{\mathrm{A}}+n_{\mathrm{B}} \mathrm{~d} \mu_{\mathrm{B}}=0 \quad \text { Constant } \mathrm{p}, \mathrm{~T} \\
& x_{\mathrm{A}} \mathrm{~d} \ln a_{\mathrm{A}}+x_{\mathrm{B}} \mathrm{~d} \ln a_{\mathrm{B}}=0 \\
& x_{\mathrm{A}} \mathrm{~d} \ln x_{\mathrm{A}}+x_{\mathrm{A}} \mathrm{~d} \ln \gamma_{\mathrm{A}}+x_{\mathrm{B}} \mathrm{~d} \ln x_{\mathrm{B}}+x_{\mathrm{B}} \mathrm{~d} \ln \gamma_{\mathrm{B}}=0 \\
& x_{\mathrm{A}} \mathrm{~d} \ln x_{\mathrm{A}}+x_{\mathrm{B}} \mathrm{~d} \ln x_{\mathrm{B}}=x_{\mathrm{A}} \frac{\mathrm{~d} x_{\mathrm{A}}}{x_{\mathrm{A}}}+x_{\mathrm{B}} \frac{\mathrm{~d} x_{\mathrm{B}}}{x_{\mathrm{B}}}=\mathrm{d} x_{\mathrm{A}}+\mathrm{d} x_{\mathrm{B}}=0 \\
& x_{\mathrm{A}} \mathrm{~d} \ln \gamma_{\mathrm{A}}+x_{\mathrm{B}} \mathrm{~d} \ln \gamma_{\mathrm{B}}=0 \quad \text { Restatement of Gibbs-Dunem for Solutions }
\end{aligned}
$$

If you know γ_{A} you can obtain γ_{B} by integration

$$
\ln \gamma_{\mathrm{B}}-\ln \gamma_{\mathrm{B}}\left(x_{\mathrm{B}}=1\right)=-\int_{x_{\mathrm{B}}=1}^{x_{\mathrm{B}}} \frac{x_{\mathrm{A}}}{x_{\mathrm{B}}} \mathrm{~d} \ln \gamma_{\mathrm{A}}
$$

Course Summary

IV. Phase Diagrams:

Eutectic;
Solid Solution;
L/V vs S/L Ideal; Azeotrope/Congruent; Heteroazeotrope/Eutectic; Regular solution model;
Lower critical solution behavior (LCST);
Freezing point depression;
Ternary phase diagram;

Silver acts like a solvent to copper and copper acts like a solvent to silver with limited solubility that is a function of temperature with a solubility limit at the eutectic point (3 phases in equilibrium)

Figure 4.1 Phase diagram of the system $\mathrm{Ag}-\mathrm{Cu}$ at 1 bar [1].

$$
\begin{aligned}
& \mu_{\mathrm{A}}^{\mathrm{ss}}=\mu_{\mathrm{A}}^{\mathrm{s}, \mathrm{o}}+R T \ln a_{\mathrm{A}}^{\mathrm{ss}} \\
& \mu_{\mathrm{A}}^{\mathrm{liq}}=\mu_{\mathrm{A}}^{\mathrm{l}, \mathrm{o}}+R T \ln a_{\mathrm{A}}^{\mathrm{liq}} \\
& \mu_{\mathrm{A}}^{\mathrm{ss}}=\mu_{\mathrm{A}}^{\text {liq }} \\
& \mu_{\mathrm{B}}^{\mathrm{ss}}=\mu_{\mathrm{B}}^{\mathrm{liq}} \\
& \mu_{\mathrm{A}}^{\mathrm{s}, \mathrm{o}}+R T \ln a_{\mathrm{A}}^{\mathrm{ss}}=\mu_{\mathrm{A}}^{1, \mathrm{o}}+R T \ln a_{\mathrm{A}}^{\mathrm{liq}} \\
& \mu_{\mathrm{B}}^{\mathrm{s}, \mathrm{o}}+R T \ln a_{\mathrm{B}}^{\mathrm{ss}}=\mu_{\mathrm{B}}^{1, \mathrm{o}}+R T \ln a_{\mathrm{B}}^{\mathrm{liq}} \\
& \ln \left(\frac{a_{\mathrm{A}}^{\mathrm{liq}}}{a_{\mathrm{A}}^{\mathrm{ss}}}\right)=-\frac{\Delta \mu_{\mathrm{A}}^{\mathrm{o}(s \rightarrow 1)}}{R T} \quad \ln \left(\frac{a_{\mathrm{B}}^{\mathrm{liq}}}{a_{\mathrm{B}}^{\mathrm{ss}}}\right)=-\frac{\Delta \mu_{\mathrm{B}}^{\mathrm{o}(s \rightarrow 1)}}{R T} \\
& \Delta \mu_{i}^{\mathrm{o}(s \rightarrow \mathrm{l})}=\mu_{i}^{\mathrm{loo}}-\mu_{i}^{\mathrm{s}, \mathrm{o}}=\Delta_{\mathrm{fus}} G_{i}^{\mathrm{o}}=\Delta_{\mathrm{fus}} H_{i}^{\mathrm{o}}-T \Delta_{\mathrm{fus}} S_{i}^{\mathrm{o}} \\
& \Delta_{\text {fus }} G_{i}^{\mathrm{o}}=0 \quad \Delta_{\text {fus }} S_{i}^{0}=\Delta_{\text {fus }} H_{i}^{0} / T_{\text {fus }, i} \\
& \Delta \mu_{i}^{\mathrm{o}(s \rightarrow \mathrm{l})}=\Delta_{\text {fus }} H_{i}^{\mathrm{o}}-T \Delta_{\text {fus }} S_{i}^{\mathrm{o}}=\Delta_{\text {fus }} H_{i}^{\mathrm{o}}\left(1-\frac{T}{T_{\text {fus }, i}}\right) \\
& C_{p}(T) \text { is constant } \\
& \ln \left(\frac{a_{\mathrm{A}}^{\text {liq }}}{a_{\mathrm{A}}^{\text {ss }}}\right)=-\frac{\Delta \mu_{\mathrm{A}}^{\mathrm{o}(s \rightarrow 1)}}{R T}=-\frac{\Delta_{\text {fus }} H_{\mathrm{A}}^{\mathrm{o}}}{R}\left(\frac{1}{T}-\frac{1}{T_{\text {fus }, \mathrm{A}}}\right) \quad \ln \left(\frac{a_{\mathrm{B}}^{\text {liq }}}{a_{\mathrm{B}}^{\text {ss }}}\right)=-\frac{\Delta \mu_{B}^{\mathrm{o}(s \rightarrow 1)}}{R T}=-\frac{\Delta_{\mathrm{fus}} H_{\mathrm{B}}^{\mathrm{o}}}{R}\left(\frac{1}{T}-\frac{1}{T_{\text {fus }, \mathrm{B}}}\right) \\
& x_{\mathrm{A}}^{\mathrm{liq}}=x_{\mathrm{A}}^{\mathrm{ss}} \exp \left[-\frac{\Delta_{\text {fus }} H_{\mathrm{A}}^{\mathrm{o}}}{R}\left(\frac{1}{T}-\frac{1}{T_{\text {fus }, \mathrm{A}}}\right)\right] \quad x_{\mathrm{B}}^{\text {liq }}=x_{\mathrm{B}}^{\text {ss }} \exp \left[-\frac{\Delta_{\text {fus }} H_{\mathrm{B}}^{\mathrm{o}}}{R}\left(\frac{1}{T}-\frac{1}{T_{\text {fus }, \mathrm{B}}}\right)\right] \quad \text { |deal }
\end{aligned}
$$

Figure 4.4 Phase diagram for the system $\mathrm{Si}-\mathrm{Ge}$ at 1 bar . The solid lines represent experimental observations [2] while the dotted and dashed lines represent calculations assuming that the solid and liquid solutions are ideal with $\Delta C_{p} \neq 0$ and $\Delta C_{p}=0$, respectively.

$$
\begin{gathered}
\text { Solve for } \mathbf{X}_{\mathbf{B}}{ }^{\text {SS }} \mathbf{X}_{\mathbf{B}}^{\text {liq }} \operatorname{since} \mathbf{X}_{\mathbf{A}}+\mathbf{X}_{\mathbf{B}}=\mathbf{1} \\
x_{\mathrm{A}}^{\mathrm{ss}} \exp \left[-\frac{\Delta_{\text {fus }} H_{\mathrm{A}}^{\mathrm{o}}}{R}\left(\frac{1}{T}-\frac{1}{T_{\text {fus }, \mathrm{A}}}\right)\right]+x_{\mathrm{B}}^{\mathrm{ss}} \exp \left[-\frac{\Delta_{\text {fus }} H_{\mathrm{B}}^{\mathrm{o}}}{R}\left(\frac{1}{T}-\frac{1}{T_{\text {fus }, \mathrm{B}}}\right)\right]=1 \\
x_{\mathrm{A}}^{\text {liq }} \exp \left[\frac{\Delta_{\text {fus }} H_{\mathrm{A}}^{\mathrm{o}}}{R}\left(\frac{1}{T}-\frac{1}{T_{\text {fus }, \mathrm{A}}}\right)\right]+x_{\mathrm{B}}^{\text {liq }} \exp \left[\frac{\Delta_{\text {fus }} H_{\mathrm{B}}^{\mathrm{o}}}{R}\left(\frac{1}{T}-\frac{1}{T_{\text {fus }, \mathrm{B}}}\right)\right]=1
\end{gathered}
$$

Figure 4.7 (a) Phase diagram of the system $\mathrm{KCl}-\mathrm{NaCl}$. (b) Gibbs energy curves for the solid and liquid solutions $\mathrm{KCl}-\mathrm{NaCl}$ at 1002 K . Thermodynamic data are taken from reference [5].

Solid solution is flatter than ideal (Pos. deviation or destabilized) Liquid is deeper than ideal (Neg. Deviation or stabilized) Deviations are associated with minima in phase diagram

Liquid/Vapor Equilibria

Ideal

Azeotrope

Heteroazeotrope

Solid/Liquid Equilibria

Eutectic

Figure 4.9 (a) Immiscibility gap of the binary solid solution $\mathrm{V}_{2} \mathrm{O}_{3}-\mathrm{Cr}_{2} \mathrm{O}_{3}$ as described by the regular solution model. (b) Gibbs energy of mixing curve of the solid solution at the temperatures marked in the phase diagram. Thermodynamic data are taken from reference [7].

Figure 4. Flory-Huggins-Staverman fit to the CPC of the i89/ 120 blend.
$\frac{\Delta G}{N R T}=\frac{\phi_{1}}{m_{1}} \ln \phi_{1}+\sum\left(\frac{\phi_{2 \mathrm{i}}}{m_{2 \mathrm{i}}} \ln \phi_{2 \mathrm{i}}\right)+g \phi_{1} \phi_{2}$

$$
g=a+\frac{\left(b_{0}+b_{1} / T\right)}{\left(1-c \phi_{2}\right)}
$$

WEIGHT PERCENT PS
Figure 7. Cloud-point curves for i89/120 and h99/120 blends.
$\Delta G_{m}=R T\left(x_{A} \ln \left(x_{A}\right)+x_{B} \ln \left(x_{B}\right)\right)+\Omega$
$X_{A} X_{B}$
Ω must have a temperature dependence for UCST
$\Omega=A+B / T$ so that it gets smaller with increasing temperature this is a non-combinatorial entropy i.e. ordering on mixing

Figure 4. Clearing behavior of higher crystallinity blends. (a)
Wide-angle scattering versus temperature. (b) Schematic of Wide-angle scattering versus temperature. (b) Schematic of phase behavior.

Freezing Point Depression

Pure solid in equilibrium with a binary solution following Henry's Law

Figure 8. Schematic description of freezing-point depression.
$\mathrm{d} \mu_{B, \text { Solid }}=\mathrm{Vm}_{\mathrm{B}, \text { Solid }} \mathrm{dP}-\mathrm{Sm}_{\mathrm{B}, \text { Solid }} \mathrm{dT}+\mathrm{RT} \mathrm{d}\left(\operatorname{lna}_{\mathrm{B}, \text { Solid }}\right)$
Isobaric, pure component B so $\operatorname{Ina}_{\mathrm{B}, \text { Solid }}=0$

$$
\mathrm{d} \mu_{\mathrm{B}, \text { Solid }}=-\mathrm{Sm}_{\mathrm{B}, \text { Solid }} d \mathrm{dT}_{\mathrm{fp}}
$$

Binary solution following Henry's Law

$$
\mathrm{d} \mu_{B, \text { Solution }}=-S_{B, \text { Solution }} d T_{f p}+R T_{f p} d\left(\ln y_{B, \text { Solution }}\right)_{P, T}
$$

For small $x: e^{-x}=1-x+\ldots$ or $\ln (1-x)=-x$
So, for small $\mathrm{y}_{\mathrm{B}, \text { Solution: }}: \operatorname{In} \mathrm{y}_{\mathrm{B}, \text { Solution }}{ }^{\sim}-\mathrm{y}_{\mathrm{A}, \text { Solution }}$
So,

$$
\begin{aligned}
& S_{B, \text { Solid }} d T_{f p}=S_{B, \text { Solution }} d T_{f p}+R T_{f p} d y_{A, \text { Solution }} \\
& d y_{A, \text { Solution }}=\left(S m_{B, S o l i d}-S m_{B, \text { Solution }}\right) /\left(R T_{f p}\right) d T_{f p} \sim-\Delta S_{B} /\left(R T_{f p}\right) d T_{f p}=-\Delta H_{B} /\left(R T_{F}\right)\left(d T_{f p}\right) / T_{f p} \\
& y_{A, S o l u t i o n}=-\Delta H_{B} m_{B} /\left(R T_{F}\right) \ln \left(T_{f p} / T_{F}\right) \text { For small } x: \ln (x)=x-1 \\
& y_{A, \text { Solution }}=-\Delta H^{m}{ }_{B} /\left(R T_{F}\right)\left(T_{f p} / T_{F}-1\right)=-\Delta H_{B}{ }_{B} /\left(R T^{2}{ }_{F}\right) \Delta T \\
& T_{f p}=T_{F}-y_{A, \text { Solution }} R T^{2} / \Delta H_{B}
\end{aligned}
$$

Course Summary

V. Phase Stability:

Metastable;
Supercool; superheat; supersaturate;
Kauzmann Paradox;
Thermal/density fluctuations;
Spinodal decomposition;
Binodal; spinodal; critical conditions;
Polymorphs; allotrophs;

The book considers first a reversible chemical reaction $A<=>B$
Cyclohexane from boat to chair conformation for instance

As temperature changes you can observer a different mix of states, $E=k_{B} T \sim 2.5 \mathrm{~kJ} / \mathrm{mole}$ at RT But fluctuations allow for 0.1% boat conformation. At $1073 \mathrm{~K} 30 \%$ boat. Probability is exp(-E/kT). The percent in boat can be measured using NMR spectroscopy.

Superheating and Melting

Superheating can occur since melting occurs at surfaces and if the surfaces are stabilized then superheated solids can be produced
Growth of a liquid phase relies on growth of a mechanical instability
A mechanical instability will not spontaneously grow if it occurs in a meta-stable region in T and P :
($d G / d x$) $=0$ defines equilibrium or binodal; $\left(d^{2} G / d x^{2}\right)=0$ defines the metastable limit or spinodal $\left(d^{3} G / d x^{3}\right)=0$ defines the critical point
$G=-S T+V p, \quad d G=-S d T+V d p$
$\left(\mathrm{d}^{2} \mathrm{G} / \mathrm{dp}^{2}\right)_{T}=(\mathrm{dV} / \mathrm{dp})_{T}<0$ and $\left(\mathrm{d}^{2} \mathrm{G} / \mathrm{dT}^{2}\right)_{\mathrm{p}}=-(\mathrm{dS} / \mathrm{dT})_{\mathrm{p}}<0$
First requires that the bulk modulus be positive, $K_{T}=\frac{1}{\kappa_{T}}=-\frac{V}{(\partial V / \partial p)_{T}}>0$ Second requires positive heat capacity, $(\mathrm{dS} / \mathrm{dT})_{\mathrm{n}}=\mathrm{C}_{\mathrm{p}} / \mathrm{T}>0$

Figure 5.3 Entropy of liquid and crystalline aluminium in stable, metastable and unstable temperature regions [12]. The temperatures where the entropy of liquid and crystalline aluminium are equal are denoted T_{K} and $T_{\text {lim cryst }}$, respectively.

Shear modulus goes to 0 at highest possible supercritical solid

Figure 5.2 Temperature dependence of the isothermal elastic stiffness constants of aluminium [10].

Kauzmann Paradox, a thermodynamic basis for the glass transition

Figure 5.1 (a) Heat capacity of crystalline, liquid and supercooled liquid Se as a function of temperature [1-3]. (b) Entropy of crystalline, liquid and supercooled liquid Se as a function of temperature.

$\Delta_{\text {fus }} S_{\mathrm{m}}^{\mathrm{o}}(T)=\Delta_{\text {fus }} S_{\mathrm{m}}^{\mathrm{o}}\left(T_{\text {fus }}\right)+\int_{T_{\text {fus }}}^{T} \frac{\Delta C_{\mathrm{p}}^{\mathrm{o}}}{T} \mathrm{~d} T$

The entropy of the liquid becomes smaller than the entropy of the solid at the Kauzmann temperature, T_{K}. This could be the infinite cooling glass transition temperature.

Since χN depends on $1 / T$ specifying χN specifies the temperature. Large χN is low tempearature.

Fig. 4.4. Phase diagram of a symmetric polymer mixture $\left(N_{\mathrm{A}}=N_{\mathrm{B}}=N\right)$. In addition to the binodal (continuous line) the spinodal is shown (broken line)

Fig. 4.3. Gibbs free energy of mixing of a symmetric binary polymer mixture ($N_{\mathrm{A}}=$ $N_{\mathrm{B}}=N$), as described by the Flory-Huggins equation

Polymorphs and Allotrophs

Allotroph: Carbon as diamond or graphite

Polymorph: Titania as anatase or rutile
Silica as α-quartz, β-quartz, tridymite, cristobalite, moganite, coesite, and stishovite

Calcium carbonate as calcite or argonite

Calcite (on left) and Aragonite (on right). Both crystals are made out of calcium carbonate, making these crystals dimorphic.

Ostwald's rule: Most stable polymorph does not always crystallize, rather, meta-stable polymorphs form at a higher rate if the surface tension difference between the melt/liquid solution and the polylmorph is small.
Ostwald ripening: Metastable polymorphs may form small crystals. Over time stable polymorphs grow from these small crystals into large crystals. This has been generalized to growth of large phases due to ripening such as in crushed ice or ice cream.
Ostwald Freundlich Equation: Small crystals dissolve more easily than large crystals. This is the reason for Ostwald ripening. Also true for vapor pressure of a liquid droplet (replace x with p)
Ostwald step rule: Least stable polymorph crystallizes first since it has a free energy that is closest to the liquid or solution state. This means that metastable phases form kinetically first if they exist. If many polymorphs exist, they will form in order of free energy with the highest forming first.

$$
\begin{aligned}
& \frac{p}{p_{\text {eq }}}=\exp \left(\frac{R_{\text {critical }}}{R}\right) \\
& R_{\text {critical }}=\frac{2 \cdot \gamma \cdot V_{\text {atom }}}{k_{\mathrm{B}} \cdot T} \\
& V_{\text {atom }}=\text { atomic volume } \\
& k_{\mathrm{B}}=\text { Boltzmann constant } \\
& \gamma=\text { surface tension }\left(\mathrm{J} \cdot \mathrm{~m}^{-2}\right) \\
& p_{\text {eq }}=\text { equilibrium partial pressure (or chemical potential or concentration) } \\
& p=\text { partial pressure (or chemical potential or concentration) } \\
& T=\text { absolute temperature }
\end{aligned}
$$

Course Summary

VI. Surfaces:

Surface excess properties;
Surface area and curvature;
Laplace equation (pressure versus curvature/size);
Contact angle;
Kelvin equation (vapor pressure for a droplet/bubble);
Solubility versus size;
Critical nucleus size;
Ostwald ripening;
Heterogeneous versus homogeneous nucleation;
Gibbs-Thompson and Ostwald-Freundlich equations;
Chemical (irreversible) or physical adsorption (reversible);
Adsorption isotherm (Langmuir, BET);
Block copolymers;

H A
-p G T

c is curvature $1 / r$

$$
\mathrm{d} U=\left[\left(p^{\beta}-p^{\alpha}\right)+\sigma\left(c_{1}+c_{2}\right)\right] A_{\mathrm{s}} \mathrm{~d} l
$$

$$
\text { At equilibrium }(\mathrm{d} U)_{S, V, n_{i}}=0
$$

$$
p^{\beta}-p^{\alpha}=\sigma\left(c_{1}+c_{2}\right)=\sigma\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)
$$

Laplace Equation

For a $100 \mathrm{~nm}\left(1 \mathrm{e}^{-5} \mathrm{~cm}\right)$ droplet of water in air ($72 \mathrm{e}^{-7} \mathrm{~J} / \mathrm{cm}^{2}$ or $7.2 \mathrm{~Pa}-\mathrm{cm}$) Pressure is 720 MPa (7,200 Atmospheres)

Dihedral angles

Figure 6.9 Two-dimensional projection of equilibrium at a plane of contact between three phases α, β and χ where the angles between the three two-phase boundaries meeting in a line of contact are denoted $\theta^{\alpha}, \theta^{\beta}$ and θ^{χ}.

$$
\begin{gathered}
\sigma^{\alpha \beta} t^{\alpha \beta}+\sigma^{\beta \chi} \boldsymbol{t}^{\beta \chi}+\sigma^{\alpha \chi} \boldsymbol{t}^{\alpha \chi}=0 \\
\frac{\sigma^{\alpha \beta}}{\sin \theta^{\chi}}=\frac{\sigma^{\beta \chi}}{\sin \theta^{\alpha}}=\frac{\sigma^{\alpha \chi}}{\sin \theta^{\beta}}=0
\end{gathered}
$$

Figure 6.10 Contact angle θ of a liquid drop resting on a solid surface. The definition of the forces used in the figure eliminates the contribution from gravity.

$$
\gamma^{\mathrm{sg}}=\gamma^{\mathrm{sl}}+\sigma^{\lg } \cos \theta=0 \quad \text { Young Dupre Equation }
$$

-S U V
H A
-p G T

$$
\ln \frac{p^{\mathrm{g}}}{p_{r=\infty}^{\mathrm{g}}}=\frac{V^{l}}{R T} \frac{2 \sigma^{\lg }}{r}
$$

Figure 6.14 The vapour pressure of Zn over a spherical droplet of molten Zn at the melting temperature as a function of the droplet radius. $p_{\mathrm{Zn}}^{\mathrm{o}}=2 \cdot 10^{-4} \mathrm{bar}, \sigma^{\mathrm{gg}}=0.78 \mathrm{~J} \mathrm{~m}^{-2}$ and $\rho=$ $6.58 \mathrm{~g} \mathrm{~cm}^{-3}$ [8].

Thomson's (or Kelvin's) equation

Pressure for equilibrium of a liquid droplet of size " r "

$$
\begin{array}{cl}
\mathrm{d} \mu^{1}=\mathrm{d} \mu^{\mathrm{g}} & \text { Reversible equilibrium } \\
V^{\mathrm{g}} \mathrm{~d} p^{\mathrm{g}}=V^{1} \mathrm{~d} p^{1} & \text { At constant temperature } \\
\mathrm{d}\left(p^{\mathrm{g}}-p^{1}\right)=\mathrm{d}\left(\frac{2 \sigma^{\mathrm{g}}}{r}\right) & \text { Differential Laplace equation } \\
\frac{V^{\mathrm{g}}-V^{1}}{V^{1}} \mathrm{~d} p^{\mathrm{g}}=\mathrm{d}\left(\frac{2 \sigma^{1 \mathrm{~g}}}{r}\right) & \\
V^{\mathrm{g}}=R T / p^{\mathrm{g}} & V^{\mathrm{g}}-V^{1} \approx V^{\mathrm{g}} \\
\frac{R T}{V^{1}} p^{\mathrm{g}} \\
p^{\mathrm{g}} & =\left(\frac{2 \sigma^{1 \mathrm{~g}}}{r}\right)
\end{array}
$$

Small drops evaporate, large drops grow

Solubility and Size, r

Consider a particle of size r_{i} in a solution of concentration x_{i} with activity a_{i}

$$
\begin{array}{ll}
\mathrm{d}\left(p^{\mathrm{s}}-p^{1}\right)=\mathrm{d}\left(\frac{2 \gamma^{\mathrm{s}}}{r}\right) & \text { Derivative form of the Laplace equation } \\
\mathrm{d} \mu_{i}^{1}=\mathrm{d} \mu_{i}^{\mathrm{s}}=V_{i}^{\mathrm{s}} \mathrm{~d} p^{\mathrm{s}}=V_{i}^{\mathrm{s} \mathrm{~d}}\left(\frac{2 \gamma^{\mathrm{sl}}}{r}\right) & \text { Dynamic equilibrium } \\
\left(\mu_{i}^{1}\right)_{r}-\left(\mu_{i}^{1}\right)_{r=\infty}=V_{i}^{\mathrm{s}} \frac{2 \gamma^{\mathrm{sl}}}{r} & \text { For an incompressible solid phase } \\
\mu_{\mathrm{A}}=\mu_{\mathrm{A}}^{*}+R T \ln a_{\mathrm{A}} & \text { Definition of activity } \\
\ln \frac{\left(x_{i}^{1}\right)_{r}}{\left(x_{i}^{x_{i}}\right)_{r=\infty}}=\frac{V_{i}^{\mathrm{s}}}{R T} \frac{2 \gamma^{\mathrm{sl}}}{r} & \begin{array}{l}
\text { Solubility increases exponentially with } \\
\text { reduction in size, } \mathrm{r}
\end{array} \\
\left(\mathrm{x}_{\mathrm{i}}^{1}\right)_{\mathrm{r}}=\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{i}}\right)_{r=\infty} \exp \left(2 \gamma^{\mathrm{s} /} /(\rho R \mathrm{R} \mathrm{r})\right) & \begin{array}{l}
\text { Small particles dissolve to build } \mathrm{l} \\
\text { with lower solubility }
\end{array}
\end{array}
$$

-To obtain nanoparticles you need to supersaturate to a high concentration (far from equilibrium). -Low surface energy favors nanoparticles. (Such as at high temperatures) -High temperature and high solid density favor nanoparticles.

Critical Nucleus and Activation Energy for Crystalline Nucleation (Gibbs)

Bulk decreases free energy

$$
\begin{gathered}
\Delta_{1-\mathrm{s}} G=-\frac{4}{3} \pi r^{3}\left(\frac{\rho}{M}\right) \Delta_{\text {fus }} G_{\mathrm{m}}+4 \pi r^{2} \gamma^{\mathrm{sl}} \\
\text { Surface incre } \\
(M / r) \text { is molar volume }
\end{gathered}
$$

$$
\frac{\mathrm{d} \Delta_{1-\mathrm{s}} G}{\mathrm{~d} r}=-4 \pi r^{2}\left(\frac{\rho}{M}\right) \Delta_{\mathrm{fus}} G_{\mathrm{m}}+8 \pi r \gamma^{\mathrm{sl}}
$$

maximum $\mathrm{d} \Delta_{1-\mathrm{s}} G / \mathrm{d} r=0 \quad$ Barrier energy for nucleation at the critical nucleus size beyond which growth is spontaneous

$$
\begin{array}{r}
r^{*}=\left[2(M / \rho) \gamma^{\mathrm{sl}}\right] / \Delta_{\mathrm{fus}} G_{\mathrm{m}} \\
\Delta_{1-\mathrm{s}} G^{*}=\frac{16 \pi\left(\gamma^{\mathrm{sl}}\right)^{3} M^{2}}{3 \rho^{2} \Delta_{\mathrm{fus}} G_{\mathrm{m}}^{2}}
\end{array}
$$

Critical Nucleus and Activation Energy for Crystalline Nucleation (Gibbs)

$$
r^{*}=\left[2(M / \rho) \gamma^{\mathrm{sl}}\right] / \Delta_{\mathrm{fus}} G_{\mathrm{m}} \quad \Delta_{1-\mathrm{s}} G^{*}=\frac{16 \pi\left(\gamma^{\mathrm{sl}}\right)^{3} M^{2}}{3 \rho^{2} \Delta_{\mathrm{fus}} G_{\mathrm{m}}^{2}}
$$

$$
\Delta_{\mathrm{fus}} G_{m}=\Delta_{\mathrm{fus}} H_{m}-\mathrm{T} \Delta_{\mathrm{fus}} S_{\mathrm{m}}
$$

Lower T leads to larger $\Delta_{\text {fus }} G_{m}$ (Driving force for crystallization) smaller r* and smaller $\Delta_{1-s} G^{*}$

Figure 6.16 (a) The critical radius $\left(r^{*}\right)$ and thermodynamic barrier for nucleation of Al ($\Delta \mathrm{G}^{*}$) versus degree of supercooling $T / T_{\text {fus. }}$ (b) The Gibbs energy of a spherical Al crystal relative to the supercooled $\mathrm{Al}(\mathrm{l})$ as a function of its radius. $\Delta_{\text {fus }} H_{\mathrm{m}}=10.794 \mathrm{~kJ} \mathrm{~mol}^{-1}, T_{\text {fus }}$ $=933.47 \mathrm{~K}$ and $\rho=2.55 \mathrm{~g} \mathrm{~cm}^{-3}[8]$.

Deep quench, far from equilibrium leads to nanoparticles

$$
\Delta_{1-\mathrm{s}} G=-\frac{4}{3} \pi r^{3}\left(\frac{\rho}{M}\right) \Delta_{\mathrm{fus}} G_{\mathrm{m}}+4 \pi r^{2} \gamma^{\mathrm{sl}}
$$

Ostwald Ripening

Dissolution/precipitation mechanism for grain growth Consider small and large grains in contact with a solution

$$
\left(\mu_{i}^{\mathrm{s}}\right)_{r^{\prime}}-\left(\mu_{i}^{\mathrm{s}}\right)_{r^{\prime \prime}}=2 V_{i}^{\mathrm{s}} \gamma^{\mathrm{sl}}\left(\frac{1}{r^{\prime}}-\frac{1}{r^{\prime \prime}}\right)
$$

Grain Growth and Elimination of Pores

Figure 6.17 The difference in the chemical potential of $\mathrm{Au}(\mathrm{s})$ between a spherical particle with radius $10 \mu \mathrm{~m}$ and a smaller particle with radius $r . \rho=18.4 \mathrm{~g} \mathrm{~cm}^{-3}$ and $\gamma^{\mathrm{sl}}=1.38 \mathrm{~J} \mathrm{~m}^{-2}$ [21].

Formation of a surface nucleus versus a bulk nucleus from \mathbf{n} monomers

Homogeneous

$$
\Delta G_{n}=-n \phi+\psi_{n} \quad \phi=\mu-\mu_{\infty}=k T \ln \left(\frac{x}{x_{\infty}}\right)
$$

$\psi_{n}=\mu_{n}^{0}-n \mu_{0} \quad \psi_{n}=a_{n} \gamma=\gamma\left(\frac{27 \beta v_{1}^{2}}{4}\right)^{\frac{1}{3}} n^{\frac{2}{3}}=\psi n^{\frac{2}{3}}$
Bulk vs n-mer
So surface excess chemical potential

$$
\begin{aligned}
\Delta G_{n} & =-\phi n+\psi n^{\frac{2}{3}} \\
n^{*} & =\left(\frac{2 \psi}{3 \phi}\right)^{3}
\end{aligned}
$$

$$
\Delta G^{*}=\frac{4 \psi^{3}}{27 \phi^{2}}=\frac{\psi n *^{\frac{2}{3}}}{3}=\frac{\phi n^{*}}{2}
$$

Heterogeneous (Surface Patch)

$$
\begin{aligned}
& \Delta G_{n^{\prime}}^{\prime}=-\phi n^{\prime}+\psi_{n^{\prime}}^{\prime} \\
& \psi_{n^{\prime}}^{\prime}=2 \pi r h \gamma=2 \gamma \sqrt{\pi h v_{1} n^{\prime}}=\psi^{\prime} n^{\frac{1}{2}}
\end{aligned}
$$

Surface energy from the sides of the patch

$$
\Delta G_{n^{\prime}}^{\prime}=-\phi n^{\prime}+\psi^{\prime} n^{\prime \frac{1}{2}}
$$

$$
n^{*}=\left(\frac{\psi^{\prime}}{2 \phi}\right)^{2}
$$

$$
\Delta G^{*}=\frac{\psi^{\prime 2}}{4 \phi}=\frac{\psi^{\prime} \sqrt{n^{\prime *}}}{2}=\phi n^{*}=\frac{\pi h \nu \gamma^{2}}{\phi}
$$

Barrier is half the height for nucleation
Size is half

$$
\begin{aligned}
\Delta G^{*}=\frac{4 \psi^{3}}{27 \phi^{2}}=\frac{\psi n^{* \frac{2}{3}}}{3}=\frac{\phi n^{*}}{2} & \Delta G^{*}=\frac{\psi^{\prime 2}}{4 \phi}=\frac{\psi^{\prime} \sqrt{n^{\prime *}}}{2}=\phi n^{*}=\frac{\pi h v_{1} \gamma^{2}}{\phi} \\
r^{*}=\frac{2 \gamma v_{1}}{\phi}=2 r^{\prime *} & r^{*}=\sqrt{\frac{n^{\prime *} v_{1}}{\pi h}}=\frac{\gamma v_{1}}{\phi}
\end{aligned}
$$

Three forms of the Gibbs-Thompson Equation

Ostwald-Freundlich Equation

$$
x=x_{\infty} \exp \left(\frac{2 v_{1} \gamma}{r k T}\right) \quad \begin{aligned}
& \mathrm{x}=\text { supersaturated mole fraction } \\
& \mathrm{x}_{\infty}=\text { equilibrium mole fraction } \\
& v_{1}=\text { the molar volume }
\end{aligned}
$$

$$
\Delta G=-n \phi+\gamma A \quad \begin{aligned}
& \text { Free energy of formation for an } \mathrm{n}- \\
& \begin{array}{l}
\text { mer nanoparticle from a } \\
\text { supersaturated solution at } \mathrm{T}
\end{array}
\end{aligned}
$$

$$
\phi=\mu-\mu_{\infty}=k T \ln \left(\frac{x}{x_{\infty}}\right)
$$

Difference in chemical potential between a monomer in supersaturated conditions and equilibrium with the particle of size r

$$
\begin{aligned}
\frac{d(\Delta G)}{d n}= & 0=-\phi+w_{1} \frac{d A}{d V} \quad \text { At equilibrium } \\
& \text { For a sphere } \quad \mathrm{A}=4 \pi \mathrm{r}^{2}=(4 \pi)^{\frac{1}{3}} 3^{\frac{2}{3}} V^{\frac{2}{3}} \quad \frac{d A}{d V} \sim \frac{2}{r}
\end{aligned}
$$

Three forms of the Gibbs-Thompson Equation

Ostwald-Freundlich Equation $\quad x=x_{\infty} \exp \left(\frac{2 v_{1} \gamma}{r k T}\right)$

Areas of sharp curvature nucleate and grow to fill in. Curvature $\kappa=1 / r$

$$
x=x_{\infty} \exp \left(\frac{2\left(\mathrm{~K}_{1}+\kappa_{2}\right) v_{1} \gamma}{k T}\right)
$$

Three forms of the Gibbs-Thompson Equation

$$
r=\frac{B \gamma T_{\infty}}{\Delta H_{f}\left(T_{\infty}-T\right)}
$$

Third form of GT Equation/ Hoffman-Lauritzen Equation B is a geometric factor from 2 to 6

$$
\begin{aligned}
& \Delta S=\frac{\Delta H}{T_{\infty}} \quad \text { Crystallize from a melt, so supersaturate by a deep quench } \\
& \Delta f=0 \sim r^{3}\left(\Delta H_{f}-\frac{T}{T_{\infty}} \Delta H_{f}\right)-B r^{2} \gamma=r^{3} \frac{\Delta H_{f}}{T_{\infty}}\left(T_{\infty}-T\right)-B r^{2} \gamma \quad \begin{array}{c}
\text { Free ene } \\
\text { cystaf fé } \\
\text { superco } \\
\text { tempera }
\end{array} \\
& \frac{T}{T_{\infty}}=1-\frac{B \gamma}{r \Delta H_{f}} \sim \exp \left(\frac{-B \gamma}{r \Delta H_{f}}\right) \quad x=x_{\infty} \exp \left(\frac{2\left(\kappa_{1}+\kappa_{2}\right) v \gamma}{k T}\right) \quad x=x_{\infty} \exp \left(\frac{2 v_{1} \gamma}{r k T}\right)
\end{aligned}
$$

Adsorption Isotherms

$$
B_{\mathrm{g}}+V_{\mathrm{MON}} \underset{k_{\mathrm{d}}}{\stackrel{k_{\mathrm{a}}}{\rightleftarrows}} B_{\mathrm{MON}}
$$

$$
\mathrm{B}_{\mathrm{g}} \text {-Gas species }\left(\mathrm{N}_{2}\right)
$$

$$
B_{m o n}-\text { Adsorbed }\left(N_{2}\right) \text { in an occupied surface site }
$$

$$
V_{\text {mon }} \text { - Available surface site }
$$

Equilibrium Constant: $\quad K_{\mathrm{L}}=\frac{k_{\mathrm{a}}}{k_{\mathrm{d}}}=\frac{\Gamma_{\mathrm{B}}}{a_{\mathrm{B}}^{\mathrm{g}}\left(\Gamma_{\mathrm{B}}^{\mathrm{sat}}-\Gamma_{\mathrm{B}}\right)} \quad \mathrm{a}_{\mathrm{B}} \mathrm{g}$ is activity of B in the gas phase
$\frac{\Gamma_{\mathrm{B}} / \Gamma_{\mathrm{B}}^{\max }}{1-\Gamma_{\mathrm{B}} / \Gamma_{\mathrm{B}}^{\max }}=\frac{\theta}{1-\theta}=K_{\mathrm{L}} a_{\mathrm{B}}$

Langmuir Adsorption Isotherm

$\theta=\Gamma_{B} / \Gamma_{B}{ }^{\text {Max }}$ Fractional Coverage
$\Gamma_{\mathrm{B}}{ }^{\text {Max }}$ Is the coverage for a monolayer.

Figure 6.24 Adsorption isotherms following Langmuir adsorption isotherm.

Derivation of Langmuir Equation (as derived by Hill)

Langmuir Equation is for equilibrium of a monolayer with a solution of concentration x_{2}
A surface has adsorption sites that can hole solvent (1) or solute (2)
Some fraction of the surface bound to solute, $\mathrm{x}_{2}{ }^{\mathrm{b}}$, and some fraction to solvent, $\mathrm{x}_{1}{ }^{\mathrm{b}}$.
The concentration of solute in the solution ((partial pressure or pressure)/saturated pressure) is $x_{2}^{s}=\theta$
The equilibrium involves $x_{1}{ }^{b}+x_{2}{ }^{s} \Leftrightarrow x_{1}{ }^{s}+x_{2}{ }^{b}$
The equilibrium constant is given by, $K=\left(x_{1}{ }^{b} x_{2}{ }^{s}\right) /\left(x_{1}{ }^{s} x_{2}{ }^{b}\right)=\left(1-x_{2}{ }^{b}\right) \theta /\left((1-\theta) x_{2}{ }^{b}\right)$
Rearranging yields $\theta=K x_{2}{ }^{\mathrm{b}} /\left(1-\mathrm{x}_{2}{ }^{\mathrm{b}}+\mathrm{K} \mathrm{x}_{2}{ }^{\mathrm{b}}\right) \sim \mathrm{Kx}_{2}{ }^{\mathrm{b}} /\left(1+\mathrm{K} \mathrm{x}_{2}{ }^{\mathrm{b}}\right)=\mathrm{p} / \mathrm{p}_{0}$

Derivation of BET Theory

Langmuir Equation is for monolayers

BET is for multilayers where the first layer has an energy of adsorption, E_{1}, and second and higher layers use the energy of liquification, E_{L}
Langmuir Equation is applied for each layer (gas and adsorbed layer are at dynamic equilibrium)
At $P^{s a t}$ the surface is in the liquid (For Langmuir this was a monolayer)

Fractional coverage of layer i, θ_{i}
Rate of adsorption on layer $i-1$ to fill layer $i, R_{i-1, a d s}=k_{i, a d} P \theta_{i-1}$
Rate if desorption from layer $I, R_{i, \text { des }}=k_{i, \text { des }} \theta_{i}$
$k_{i, \text { ads }}=k_{i, \text { des }}=\exp \left(-E_{i} / k T\right)$

$$
\begin{aligned}
& \frac{1}{v\left[\left(p_{0} / p\right)-1\right]}=\frac{c-1}{v_{\mathrm{m}} c}\left(\frac{p}{p_{0}}\right)+\frac{1}{v_{m} c}, \quad \begin{array}{l}
v_{\mathrm{m}}=\text { monolayer amount of gas } \\
v=\text { experimental amount of gas adsorbed }
\end{array} \\
& c=\exp \left(\frac{E_{1}-E_{\mathrm{L}}}{R T}\right)
\end{aligned}
$$

How can you predict the phase size? (Meier and Helfand Theory)

 Consider lamellar micro-phase separation.$$
d_{\mathrm{AB}}^{3}=\frac{N_{\mathrm{AB}}^{3} v_{\mathrm{c}}^{3}}{o_{\mathrm{p}}^{3}} \propto \chi d_{\mathrm{t}} v_{\mathrm{c}}^{2 / 3} N_{\mathrm{AB}}^{2}
$$

Fig. 4.30. Set of samples of Fig. 4.28. Molecular weight dependence of the layer spacing d_{AB}

Course Summary

VII. Heat of Formation:

Dependencies in periodic table;
Electronegativity;
Energetics of formation (electrostatic, repulsion, dispersion, polarization, crystal field);
Atomic size (perovskites, spinels, zeolites);
Substitutional solids;
Conformational entropy of polymers

Electronegativity, the ability of an atom to attract electrons in a bond Linus Pauling

Energetics of compound formation

$$
\mathrm{M}^{+}(\mathrm{g})+\mathrm{X}^{-}(\mathrm{g})=\mathrm{MX}(\mathrm{~s}) \quad-\Delta_{\mathrm{latt}} H_{\mathrm{m}}
$$

$$
\begin{aligned}
\Delta_{\text {latt }} H_{\mathrm{m}}= & \Phi_{\text {electrostatic }}+\Phi_{\text {repulsion }}+\Phi_{\text {dispersion }}+\Phi_{\text {polarization }} \\
& +\Phi_{\text {crystal field }}
\end{aligned}
$$

Electrostatic attraction +-
Electron electron repulsion
Van der Waals or dispersion ($\delta+$ makes δ - leads to net attraction)
Polarization (shifting within compound of electrons)
Crystal field effects

Conformational Enthalpy of Polymers

The Rotational Isomeric State Model of Volkenstein and Paul Flory (Nobel Prize)

Carbon has a tetrahedral bonding arrangement
For a chain of carbon the two side groups interact with the side groups of neighboring carbons

"Trans" is sterically the most favorable arrangement "Gauche +" and "Gauche -" are less favorable

The Boltzmann equation gives the probability of a particular conformation, \mathbf{Z} is the partition function or the sum of all of the different Boltzmann expressions in an ensemble

$$
\begin{aligned}
& P\left(\varphi_{i}\right)=\frac{\exp \left(-E\left(\varphi_{i}\right) / k T\right)}{Z} \\
& Z=\sum_{i} \mathrm{e}^{-\beta E_{i}}
\end{aligned}
$$

Conformational Enthalpy of Polymers

The Rotational Isomeric State Model of Volkenstein and Paul Flory (Nobel Prize)
For a polymer with N carbons there are $\mathrm{N}-2$ covalent bonds
The number of discrete conformation states per chain is $v^{\mathrm{N}-2}$ where v is the number of discrete rotational states for the chain, $\mathrm{tttt}, \mathrm{g}^{-\mathrm{gg}} \mathrm{g}^{-}, \mathrm{g}^{+} \mathrm{g}^{+} \mathrm{g}^{+} \mathrm{g}^{+}, \mathrm{g}^{+} \mathrm{ttt}$, etc. for $\mathrm{N}=4 ; \mathrm{N}_{1}=1, \mathrm{~N}_{4}=4$, etc. assuming no end effects

$$
Z=\sum_{\left\{N_{\eta}\right\}} \frac{(N-2)!}{N_{1}!\ldots N_{v}!} \exp \left(-N_{1} E\left(\varphi_{1}\right) / k T\right) \ldots \exp \left(-N_{v} E\left(\varphi_{v}\right) / k T\right)
$$

Average rotational angle

$$
\langle\cos \varphi\rangle=\frac{\sum_{i=1}^{v} \exp \left(-E\left(\varphi_{i}\right) / k T\right) \cos \varphi_{i}}{\sum_{i=1}^{v} \exp \left(-E\left(\varphi_{i}\right) / k T\right)}=\frac{1-\sigma}{1+2 \sigma}
$$

Characteristic
Ratio

$$
C_{\infty}=\lim _{N \rightarrow \infty} \frac{\left\langle r^{2}\right\rangle_{0}}{N l^{2}}=\frac{(1+\cos \theta)}{(1-\cos \theta)} \frac{(1+\langle\cos \varphi\rangle)}{(1-\langle\cos \varphi\rangle)}
$$

Q is the bond angle $180^{\circ}-109^{\circ}=71^{\circ}$ $\mathrm{E}_{\mathrm{g}+-}=2100 \mathrm{~J} / \mathrm{mole}$ $\mathrm{C}_{\infty}=3.6$ Exp. 6.7

Course Summary

VIII. Heat Capacity:

Cp-Cv;
Internal energy of a gas;
Dulong-Petit Law for solids;
Phonons; longitudinal; transverse; optical; acoustic
Brillouin Zones;
Acoustic phonons; Optical Phonons
Density of states;
Bose-Einstein statistics;
Einstein model;
Debye model;
Dispersion relations;
Debye temperature; Debye frequency;
Modulus and heat capacity;
Grüneisen parameter $\mathrm{Cp}-\mathrm{Cv}$
Spectroscopy; density of states; heat capacity;
Entropy from heat capacity;
Heat capacity from group contribution;
Electronic heat capacity;
Heat capacity at second order transitions;
Heat capacity of polymers

Heat Capacity

DSC

Heat is not a state function, so we define a state function related to heat, $d S=d Q / T$

$$
\begin{aligned}
& \mathrm{dH}=\mathrm{VdP}+\mathrm{TdS} \\
& \text { At constant } \mathrm{P}(\mathrm{dH}=\mathrm{TdS}=\mathrm{dQ})_{\mathrm{P}} \\
& \text { We have } \mathrm{C}_{\mathrm{p}}=(\mathrm{dH} / \mathrm{dT})_{\mathrm{P}}=(\mathrm{dQ} / \mathrm{dT})_{P}
\end{aligned}
$$

$$
\begin{equation*}
-S \quad U(E) V \tag{array}
\end{equation*}
$$

In the DSC we measure the heat flow dQ/dt (Watts) at a constant heating rate $\mathrm{dT} / \mathrm{dt}$ at constant pressure, $(\mathrm{dQ} / \mathrm{dT})_{\mathrm{P}}=\mathrm{C}_{\mathrm{p}}$
So, the y -axis is C_{p} times $\mathrm{dT} / \mathrm{dt}$ the latter of which is constant

Derive the expression for $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}$

$$
\begin{aligned}
& C_{p}-C_{v}=\alpha^{2} V T / \kappa_{T} \\
& \alpha=(1 / V)(d V / d T)_{p} \\
& \kappa_{T}=(1 / V)(d V / d P)_{T}
\end{aligned}
$$

From Chapter 1

H -p

```
\[
d T)_{V}
\]
\(C_{V}=(d U / d T)_{V}\)
From the Thermodynamic Square
\(d U=T d S-p d V\) so \(C_{V}=(d U / d T)_{V}=T(d S / d T)_{V}-p(d V / d T)_{V}\)
Second term is 0 dV at constant V is 0
\((d S / d T)_{V}=C_{V} / T\)
Similarly
\(C_{p}=(d H / d T)_{p}\)
From the Thermodynamic Square
\(d H=T d S+V d p\) so \(C_{p}=(d H / d T)_{p}=T(d S / d T)_{p}-V(d p / d T)_{p}\)
Second term is \(0 d p\) at constant \(p\) is 0
\((d S / d T)_{p}=C_{p} / T\)
Write a differential expression for \(d S\) as a function of \(T\) and \(V\)
\(d S=(d S / d T)_{V} d T+(d S / d V)_{T} d V\) using expression for \(C_{V}\) above and Maxwell for \((d S / d V)_{T}\)
\(d S=C_{V} / T d T+(d p / d T)_{V} d V\) use chain rule: \((d p / d T)_{V}=-(d V / d T)_{p}(d P / d V)_{T}=V \alpha /\left(V \kappa_{T}\right)\)
Take the derivative for \(C_{p}: C_{p} / T=(d S / d T)_{p}=C_{V} / T(d T / d T)_{p}+\left(\alpha / \kappa_{T}\right)(d V / d T)_{p}=C_{V} / T+\left(V \alpha^{2} / \kappa_{T}\right)\)
\(\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\alpha^{2} \mathrm{VT} / \kappa_{\mathrm{T}}\)

Table 8.1 Number of modes and heat capacity of gases in the classical limit.
\begin{tabular}{lllllll}
\hline & \multicolumn{2}{l}{ Number of modes } & & \multicolumn{2}{l}{ Classical } \\
\cline { 2 - 3 } \cline { 6 - 7 } & Translational & Rotational & Vibrational & & \(C_{V, \mathrm{~m}} / R\) & \(C_{p, \mathrm{~m}} / R\) \\
\hline \(\mathrm{~A}(\mathrm{~g})\)
\end{tabular}


Figure 3.9 Heat capacity at constant volume of one molecule of \(\mathrm{H}_{2}\) in the gas phase. The vertical scale is in fundamental units; to obtain a value in conventional units, multiply by \(k_{\mathrm{B}}\). The contribution from the three translational degrees of freedom is \(\frac{3}{2}\); the contribution at high temperatures from the two rotational degrees of freedorn is 1; and the contribution
Figure 8.2 Molar h symbols at \(5000 \mathrm{~K}_{1}\)
from the potential and kinetic energy of the vibrational motion in the high temperature limit is 1 . The classical limits are attained when r \(\gg\) refevant energy level separations.
] Monoatomic \(\mathrm{H}(\mathrm{g})\) with only translational degrees of freedom is already fully excited at low temperatures. The vibrational frequencies (n) of \(\mathrm{H} 2(\mathrm{~g})\) and \(\mathrm{H} 2 \mathrm{O}(\mathrm{g})\) are much higher, in the range of 100 THz , and the associated energy levels are significantly excited only at temperatures above 1000 K. At room temperature only a few molecules will have enough energy to excite the vibrational modes, and the heat capacity is much lower than the classical value. The rotational frequencies are of \(00^{\text {the order }} 100\) times smaller, so they are fully excited above \({ }^{\sim} 10 \mathrm{~K}\).

\section*{id \(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\). The open}

\section*{Atoms in a crystal (Dulong and Petit Model)}

\section*{Works at high temperature}

Three Harmonic oscillators, \(x, y, z\)
Spring (Potential Energy)
\(d U / d x=F=-k x\) where \(x\) is 0 at the rest position \(U=-1 / 2 k x^{2}\)
Kinetic Energy
\(U=1 / 2 \mathrm{mc}^{2}\)

Each atom in a solid has 6 springs
Each spring with \(1 / 2\) kT energy
So, \(6 / 2 R=3 R=C_{v}\)
\[
\begin{aligned}
& U=\frac{1}{2} m c^{2}+\frac{1}{2} K x^{2}=\frac{1}{2} m A^{2} \omega^{2} \cos ^{2} \omega t+\frac{1}{2} K A^{2} \sin ^{2} \omega t \\
& x=A \sin \omega t \quad \omega=2 \pi v=\sqrt{\frac{K}{m}}
\end{aligned}
\]

Three oscillator per atom so \(U_{m}=3 R T\) \(d U=-p d V+T d S \quad H\) A
\(C_{V, \mathrm{~m}}=3 R=24.94 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad \mathrm{~d}(U / \mathrm{dT})_{\mathrm{v}}=T \mathrm{~T}\left(\mathrm{dS} / \mathrm{dT} \mathrm{T}_{v}=C_{v} \quad-\mathrm{pGT}\right.\)
```

Phonons Two size scales, a and λ
If $\lambda \geq$ a you are within a Brillouin Zone
Wavevector $\mathrm{k}=2 \pi / \lambda$
k-vector is like the inverse-space vectors for the lattice It is seen to repeat in inverse space making an inverse lattice
A phonon with wavenumber k is thus equivalent to an infinite family of phonons with wavenumbers $k \pm 2 \pi / a, k \pm 4 \pi / a$, and so forth.

```

```

b)

```

```

Brillouin zones, (a) in a square lattice, and (b) in a hexagonal lattice
those whose bands become zero at the center of the Brillouin zone are called acoustic phonons, since they correspond to classical sound in the limit of long wavelengths. The others are optical phonons, since they can he excited hy elentromannetic radiation

```

\section*{Phonons}

> Two size scales, \(a\) and \(\lambda\)
> If \(\lambda \geq\) a you are within a Brillouin Zone
> Wavevector \(k=2 \pi / \lambda\)

The density of states is defined by
\[
D(E)=\frac{1}{V} \cdot \frac{\mathrm{~d} Z_{m}(E)}{\mathrm{d} E}
\]

The partition function can be defined in terms of E or in terms of k
E and k are related by the dispersion relationship which differs for different systems

For a longitudinal Phonon in a string of atoms the dispersion relation is:
\[
E=2 \hbar \omega_{0}\left|\sin \left(\frac{k a}{2}\right)\right|
\]
where \(\omega_{0}=\sqrt{k_{\mathrm{F}} / m}\) is the oscillator frequency, \(m\) the mass of the atoms, \(k_{\mathrm{F}}\) the inter-atomic force constant and \(a\) inter-atomic spacing.


\section*{Phonons}

Bose-Einstein statistics gives the probability of finding a phonon in a given state:
\[
n\left(\omega_{k, s}\right)=\frac{1}{\exp \left(\frac{\hbar \omega_{k, s}}{k_{\mathrm{B}} T}\right)-1}
\]

\section*{Phonons}

Dispersion relation for phonons
\[
\omega_{ \pm}^{2}=K\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) \pm K \sqrt{\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right)^{2}-\frac{4 \sin ^{2} \frac{k a}{2}}{m_{1} m_{2}}}
\]


\section*{Einstein Model}

Works at low and high temperature

\section*{Lower at low temperature}

Quantized energy levels
\(\varepsilon_{n}=\left(n+\frac{1}{2}\right) \hbar \omega\)
Bose-Einstein statistics determines the distribution of energies

The mean " \(n\) " at \(T\) is given by
\[
\bar{n}=\frac{1}{\exp \left(\hbar \omega / k_{\mathrm{B}} T\right)-1}
\]

Average energy for a crystal with three identical oscillators
\[
\bar{U}=3 N\left(\frac{1}{2}+\bar{n}\right) \hbar \omega_{\mathrm{E}}=3 N\left(\frac{\hbar \omega_{\mathrm{E}}}{2}+\frac{\hbar \omega_{\mathrm{E}}}{\exp \left(\hbar \omega_{\mathrm{E}} / k_{\mathrm{B}} T\right)-1}\right)
\]

\section*{Einstein Model}

Works at low and high temperature
Lower at low temperature

Average energy for a crystal with three identical oscillators
\[
\begin{aligned}
& \bar{U}=3 N\left(\frac{1}{2}+\bar{n}\right) \hbar \omega_{\mathrm{E}}=3 N\left(\frac{\hbar \omega_{\mathrm{E}}}{2}+\frac{\hbar \omega_{\mathrm{E}}}{\exp \left(\hbar \omega_{\mathrm{E}} / k_{\mathrm{B}} T\right)-1}\right) \\
& C_{V, \mathrm{~m}}=\left(\frac{\mathrm{d} \bar{U}}{\mathrm{~d} T}\right)_{V}=3 R\left(\frac{\Theta_{\mathrm{E}}}{T}\right)^{2} \frac{\exp \left(\Theta_{\mathrm{E}} / T\right)}{\left[\exp \left(\Theta_{\mathrm{E}} / T\right)-1\right]^{2}} \\
& \text { Einstein temperature: } \quad \Theta_{\mathrm{E}}=\frac{\hbar \omega_{\mathrm{E}}}{k_{\mathrm{B}}}
\end{aligned}
\]

\section*{Dispersion Curve}
\(\omega(q)=\sqrt{\frac{4 K}{m}}\left|\sin \left(\frac{q a}{2}\right)\right|\)
Angular frequency of vibrations as a function of wavevector, q

\[
-\pi / \mathrm{a}<q<\pi / \mathrm{a}
\]

First Brillouin Zone of the one-dimensional lattice

Longer wavevectors are smaller than the lattice

Figure 8.5 The dispersion curve for a one-dimensional monoatomic chain of atoms.



Figure 8.7 Experimental dispersion relations for acoustic modes for lead at 100 K [2].
Reproduced by permission of B. N. Brockhouse and the American Physical Society.


Figure 8.12 Experimental heat capacity of Cu at constant pressure compared with the Debye and Einstein \(C_{V, \mathrm{~m}}\) calculated by using \(\Theta_{\mathrm{E}}=244 \mathrm{~K}\) and \(\Theta_{\mathrm{D}}=314 \mathrm{~K}\). The vibrational density of states according to the two models is shown in the insert.

Higher Characteristic T represents stronger bonds

Table 8.2. Debye temperature \(\left(\Theta_{D}\right.\) in \(K\) ) and electronic heat capacity coefficient (see Section 8.4) \(\left(\gamma \mathrm{in} \mathrm{mJ} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)\) of the elements.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \mathrm{Li} \\
& 344 \\
& 18
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Be} \\
& 1440 \\
& 2
\end{aligned}
\] & & & & & & \multirow[t]{2}{*}{\begin{tabular}{l}
A \\
\(\Theta_{D}\) \\
\(\gamma\)
\end{tabular}} & \multicolumn{4}{|l|}{\multirow[b]{2}{*}{Higher Characteristic T represents stronger bonds}} & B & \[
\begin{aligned}
& \mathrm{C} \\
& 2050 \\
& 0
\end{aligned}
\] & N & O & F & & \[
\begin{aligned}
& \mathrm{Ne} \\
& 75
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \mathrm{Na} \\
& 158 \\
& 14
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Mg} \\
& 400 \\
& 14
\end{aligned}
\] & & & & & & & & & & & \[
\begin{array}{|l}
\mathrm{Al} \\
428 \\
14
\end{array}
\] & \[
\begin{aligned}
& \mathrm{Si} \\
& 645
\end{aligned}
\] & P & S & Cl & & \[
\begin{aligned}
& \mathrm{Ar} \\
& 92
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \mathrm{K} \\
& 91 \\
& 21
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Ca} \\
& 230 \\
& 77
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& \mathrm{Sc} \\
& 360
\end{aligned}\right.
\] & \[
\begin{aligned}
& \mathrm{Ti} \\
& 420 \\
& 36
\end{aligned}
\] & \[
\begin{array}{|l}
\mathrm{V} \\
380 \\
92
\end{array}
\] & \[
\begin{aligned}
& \mathrm{Cr} \\
& 630 \\
& 16
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Mn} \\
& 410 \\
& 180
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Fe} \\
& 470 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Co} \\
& 445 \\
& 48
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Ni} \\
& 450 \\
& 73
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Cu} \\
& 315 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Zn} \\
& 327 \\
& 6
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Ga} \\
& 320 \\
& 6
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Ge} \\
& 374
\end{aligned}
\] & \[
\begin{aligned}
& \text { As } \\
& 282
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Se} \\
& 90
\end{aligned}
\] & Br & & \[
\begin{aligned}
& \mathrm{Kr} \\
& 72
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \mathrm{Rb} \\
& 56 \\
& 24
\end{aligned}
\] & \begin{tabular}{l}
Sr \\
147 \\
37
\end{tabular} & \[
\begin{aligned}
& \mathrm{Y} \\
& 280
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Zr} \\
& 291 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Nb} \\
& 275 \\
& 88
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Mo} \\
& 450 \\
& 21
\end{aligned}
\] & Tc & \[
\begin{aligned}
& \mathrm{Ru} \\
& 600 \\
& 34
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Rh} \\
& 480 \\
& 49
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Pd} \\
& 274 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Ag} \\
& 225 \\
& 6
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Cd} \\
& 209 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& \text { In } \\
& 108 \\
& 18
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Sn} \\
& 200 \\
& 18
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Sb} \\
& 211
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Te} \\
& 153
\end{aligned}
\] & I & & \[
\begin{aligned}
& \mathrm{Xe} \\
& 64
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \mathrm{Cs} \\
& 33 \\
& 32
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Ba} \\
& 110 \\
& 27
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{La} \\
& 142
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Hf} \\
& 252 \\
& 26
\end{aligned}
\] & \[
\begin{array}{|l}
\mathrm{Ta} \\
240 \\
59 \\
\hline
\end{array}
\] & \[
\begin{array}{|l}
\mathrm{W} \\
400 \\
12
\end{array}
\] & \[
\begin{aligned}
& \mathrm{Re} \\
& 430 \\
& 25
\end{aligned}
\] & \[
\begin{array}{|l}
\mathrm{Os} \\
500 \\
24
\end{array}
\] & \[
\begin{array}{|l}
\text { Ir } \\
420 \\
31 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{Pt} \\
& 240 \\
& 66 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Au} \\
& 165 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Hg} \\
& 72 \\
& 19
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Tl} \\
& 79 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Pb} \\
& 105 \\
& 34 \\
& \hline
\end{aligned}
\] & Bi
\[
119
\] & Po & At & & Rn \\
\hline
\end{tabular}

\section*{Modulus and Heat Capacity}
\[
\begin{aligned}
& \sigma=E \varepsilon \\
& F / A=E \Delta d / d \\
& F=K \Delta d \\
& K=F / \Delta d=E A / d
\end{aligned}
\]

At large \(q, \omega=V(4 K / m)\) This yields \(\omega_{D}\) from \(E\)

For \(\mathrm{Cu}, \theta_{\mathrm{D}}=344 \mathrm{~K}\)

\(\Theta_{\mathrm{D}}=\frac{\hbar \omega_{\mathrm{D}}}{k_{\mathrm{B}}}=2 \pi \frac{h v_{\mathrm{D}}}{k_{\mathrm{B}}}\)
\(\omega_{\mathrm{D}}=32 \mathrm{THz}\)
\(\mathrm{K}=13.4 \mathrm{~N} / \mathrm{m}\)
\(\omega_{\mathrm{D}}=18 \mathrm{THz}\)

\section*{Spectroscopy measures vibrations, this can be used to calculate the density of states, this can be integrated to obtain the heat capacity}

IR: High Polarity Motion of charged atoms under electromagnetic field

NaCl

Number of vibrational modes \(3 N_{\mathrm{A}} g(v) \mathrm{d} v\) where \(\int_{0}^{\infty} g(v) \mathrm{d} v=1\)



Figure 8.16 (a) IR and (b) Raman spectra for the mineral calcite, \(\mathrm{CaCO}_{3}\). The estimated density of vibrational states is given in (c) while the deconvolution of the total heat capacity into contributions from the acoustic and internal optic modes as well as from the optic continuum is given in (d).

Raman: High Polarizability
Motion of electrons in polarizable bonds under electromagnetic field

Benzene, Graphene, Nanotubes,

\section*{Entropy from Heat Capacity}
-SUV
H A
-pGT
\(C_{V}=(d U / d T)_{V}\)
From the Thermodynamic Square
\(d U=T d S-p d V\) so \(C_{V}=(d U / d T)_{V}=T(d S / d T)_{V}-p(d V / d T)_{V}\)
Second term is 0 dV at constant V is 0
\((d S / d T)_{V}=C_{V} / T\)
Similarly
\(C_{p}=(d H / d T)_{p}\)
From the Thermodynamic Square
\(d H=T d S+V d p\) so \(C_{p}=(d H / d T)_{p}=T(d S / d T)_{p}-V(d p / d T)_{p}\)
Second term is 0 dp at constant p is 0
\((d S / d T)_{p}=C_{p} / T\)
Integrate \(\mathrm{C}_{\mathrm{p}} / \mathrm{T}\) dT or Integrate \(\mathrm{C}_{\mathrm{V}} / \mathrm{T}\) dT to obtain S

Low Temperatures Solve Numerically High Temperatures Series Expansion
\[
S=3 R\left[\frac{4}{3}+\ln \left(\frac{T}{\theta_{i}}\right)+\frac{1}{40}\left(\frac{\theta_{i}}{T}\right)^{2}-\frac{1}{2240}\left(\frac{\theta_{i}}{T}\right)^{4}+\ldots\right]
\]
\[
\begin{gathered}
C_{V, \mathrm{~m}}=3 R\left(\frac{\Theta_{\mathrm{E}}}{T}\right)^{2} \frac{\exp \left(\Theta_{\mathrm{E}} / T\right)}{\left[\exp \left(\Theta_{\mathrm{E}} / T\right)-1\right]^{2}} \\
S_{\mathrm{E}}=3 R\left[\frac{\Theta_{\mathrm{E}} / T}{\left[\exp \left(\Theta_{\mathrm{E}} / T\right)-1\right]}-\ln \left[1-\exp \left(-\Theta_{\mathrm{E}} / T\right)\right]\right] \\
\theta_{\mathrm{E}}=\hbar \omega_{\mathrm{E}} / k_{\mathrm{B}}
\end{gathered}
\]
\[
C_{V, \mathrm{~m}}=9 R\left(\frac{T}{\Theta_{\mathrm{D}}}\right)^{3} \int_{0}^{\Theta_{\mathrm{D}} / T} \frac{e^{x}}{\left(e^{x}-1\right)^{2}} x^{4} \mathrm{~d} x
\]
\[
S_{\mathrm{D}}=3 R\left[\frac{4 T^{3}}{\Theta_{\mathrm{D}}^{3}} \int_{0}^{\Theta_{\mathrm{D}} / T} \frac{x^{3} \mathrm{~d} x}{[\exp (x)-1]}-\ln \left[1-\exp \left(-\Theta_{\mathrm{D}} / T\right)\right]\right]
\]
\[
\theta_{\mathrm{D}}=\hbar \omega_{\mathrm{D}} / k_{\mathrm{B}}
\]

\[
\begin{aligned}
& C_{\mathrm{E}}=\frac{\partial \Delta U}{\partial T}=2 n\left(\varepsilon_{\mathrm{F}}\right) k_{\mathrm{B}}^{2} T \\
& C_{\mathrm{E}}=\gamma T
\end{aligned}
\]

Figure 8.22 Variation of the electronic heat capacity coefficient with composition for the alloys \(\mathrm{Rh}-\mathrm{Pd}\) and \(\mathrm{Pd}-\mathrm{Ag}\) [17]. Solid and dotted lines represent the electronic DoS for the 5 s and 4 d bands, respectively.

A striking example is the electronic heat capacity coefficients observed for \(\mathrm{Rh}-\mathrm{Pd}-\mathrm{Ag}\) alloys given in Figure 8.22 [17]. In the rigid band approach the addition of Ag to Pd gives an extra electron per atom of silver and these electrons fill the band to a higher energy level. Correspondingly, alloying with Rh gives an electron hole per Rh atom and the Fermi level is moved to a lower energy. The variation of the electronic heat capacity coefficient with composition of the alloy maps approximately the shape of such an electron band.


\section*{From Kittel and Kroemer Thermal Physics Chapter 2}

For a system with quantized energy and two states \(\varepsilon_{1}\) and \(\varepsilon_{2}\), the ratio of the probabilities of the two states is given by the Boltzmann potentials, ( \(\tau\) is the temperature \(\mathrm{k}_{\mathrm{B}} \mathrm{T}\) )
\[
\frac{P\left(c_{1}\right)}{P\left(\varepsilon_{2}\right)}=\frac{\exp \left(-\varepsilon_{1} / \tau\right)}{\exp \left(-\varepsilon_{2} / \tau\right)} .
\]

If state \(\varepsilon_{2}\) is the ground state, \(\varepsilon_{2}=0\), and the sum of exponentials is called the partition function \(Z\), and the sum of probabilities equals 1 then,
\(\mathrm{Z}=\exp \left(-\varepsilon_{2} / \tau\right)+1 \quad U \equiv\langle\varepsilon\rangle=\frac{\varepsilon \exp \left(-\varepsilon_{i} \tau\right)}{Z}=\varepsilon \frac{\exp (-\varepsilon / \tau)}{1+\exp (-\varepsilon / \tau)} . \quad C_{V}=(\partial U / \partial \tau)_{V}\),
Z normalizes the probability for a state " s "
\(\mathrm{P}\left(\varepsilon_{\mathrm{s}}\right)=\exp \left(-\varepsilon_{\mathrm{s}} / \tau\right) / Z\)
\[
C_{V}=k_{B}\left(\frac{\varepsilon}{k_{B} T}\right)^{2} \frac{\exp \left(\varepsilon / k_{B} T\right)}{\left[\exp \left(\varepsilon / k_{1} T\right)+1\right]^{2}}
\]

The average energy for the system is \(U=\left(\Sigma \varepsilon_{i} e^{-\varepsilon_{i} / \tau}\right) / Z=\tau^{2}\left(\frac{d \ln Z}{d \tau}\right)\)

\section*{Heat Capacity of Polymers}

Amorphous structure but with regular order along the chain 1-d vibrational structure

Einstein method works well above 100K
\[
\begin{gathered}
\mathrm{E}(\theta / T)=\left[(\theta / T)^{2} \exp (\theta / T)\right] /[\exp (\theta / T)-1]^{2} \\
C_{E}=N k \sum_{N_{\mathrm{E}} \mathrm{E}(\theta / T)} \\
\mathrm{N}_{\mathrm{E}}=3 N_{\text {Atoms }}-N
\end{gathered}
\]
\(\mathrm{N}_{\text {atoms }}=\) number of atoms in a mer unit 3 for \(\mathrm{CH}_{2}\)
\(\mathrm{N}=\) number of skeletal modes of vibration \(N=2\) for \(-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}{ }^{-}\)
\(C_{V, \mathrm{~m}}=\left(\frac{\mathrm{d} \bar{U}}{\mathrm{~d} T}\right)_{V}=3 R\left(\frac{\Theta_{\mathrm{E}}}{T}\right)^{2} \frac{\exp \left(\Theta_{\mathrm{E}} / T\right)}{\left[\exp \left(\Theta_{\mathrm{E}} / T\right)-1\right]^{2}}\)
Einstein temperature: \(\quad \Theta_{\mathrm{E}}=\frac{\hbar \omega_{\mathrm{E}}}{k_{\mathrm{B}}}\)

\section*{Course Summary}

\section*{IX. Solution Models and Equations of State:}

Regular solution;
Quasi-regular solution with lattice vibrations;
Accounting for correlations (mean field or specific interactions);
Virial approach for mean field;
Correlation function for specific interactions;
Van der Waals model;
Margulis model; Margulis acid-base;
Redlich-Kister model (asymmetric phase diagrams);
Scatchard-Hildebrand theory (volume versus mole fraction);
Flory-Huggins model (polymers based on volume fraction);
Group Contribution Models:
Hydrogen bonding MOSCED (Modified separation of cohesive energy density); SSCED (Simplified separation of cohesive energy density);
Local Clustering Models: Wilson's equation; NRTL (Non-random two liquid model);
Surface area rather than volume fraction for interactions: UNIQUAC (Universal quasi-chemical model);
UNIFAC (Universal functional activity coefficient model);
Solutions with multiple sublattices ( NaCl );
Order-disorder systems
Order parameter
Non-stoichiometric compounds (perovskite oxides)

\section*{Regular Solution Solution Model}
\[
\begin{gathered}
G \approx A=-k_{\mathrm{B}} T \ln \left[\frac{N!}{N_{\mathrm{A}}!N_{\mathrm{B}}!}\right]+U_{\mathrm{A}}+U_{\mathrm{B}}+\frac{z N_{\mathrm{A}} N_{\mathrm{B}}}{N} \omega_{\mathrm{AB}} \\
\Delta_{\operatorname{mix}} G_{\mathrm{m}}=R T\left[x_{\mathrm{A}} \ln x_{\mathrm{A}}+x_{\mathrm{B}} \ln x_{\mathrm{B}}\right]+\Omega_{\mathrm{AB}} x_{\mathrm{A}} x_{\mathrm{B}} \\
\Omega_{\mathrm{AB}}=z L \omega_{\mathrm{AB}} \\
\Delta_{\text {mix }} H_{\mathrm{m}} \approx \Delta_{\text {mix }} U_{\mathrm{m}}=\Omega_{\mathrm{AB}} x_{\mathrm{A}} x_{\mathrm{B}} \\
\mu_{\mathrm{A}} \sim \mathrm{dG} / \mathrm{dx}_{\mathrm{A}} \\
\mu_{\mathrm{A}}-\mu_{\mathrm{A}}^{\mathrm{o}}=R T \ln a_{\mathrm{A}}=R T \ln x_{\mathrm{A}}+\Omega_{\mathrm{AB}} x_{\mathrm{B}}^{2} \\
R T \ln \gamma_{\mathrm{A}}=\Omega_{\mathrm{AB}} x_{\mathrm{B}}^{2}
\end{gathered}
\]

\section*{Excess molar Gibbs energy of mixing for quasi-regular solution}
\[
\Delta_{\operatorname{mix}}^{\mathrm{exc}} G_{\mathrm{m}}=z L x_{\mathrm{A}} x_{\mathrm{B}}\left(\omega_{\mathrm{AB}}-T \eta_{\mathrm{AB}}\right)
\]
\(\mathrm{G}=\mathrm{H}-\mathrm{TS}\) so first term is enthalpic, second is entropic
\[
\Delta_{\mathrm{mix}}^{\mathrm{exc}} G_{\mathrm{m}}=x_{\mathrm{A}} x_{\mathrm{B}} \Omega_{\mathrm{AB}}\left(1-\frac{T}{\tau}\right)
\]
\(\tau\) is a characteristic
temperature, when \(\mathrm{T}=\tau\) ideal solution behavior is seen

Correlations


Dilute: Ideal behavior, there are no interactions

Semi-dilute: weak or strong interactions are possible

With weak interactions the system can be treated with a "mean field". No correlation is observed, we can use the second virial coefficient and Hildebrand Model

With strong interactions we need to use detailed information about interactions, correlation function or other models
\[
S(\mathbf{k})=1+\rho \int \mathrm{d} \mathbf{r}(g(\mathbf{r})-1) \exp (i \mathbf{k} . \mathbf{r})
\]


FIG. 3.2. Structure factor of liquid sodium near the normal melting temperature. The points are experimental x -ray scattering results \({ }^{8}\) and the curve is obtained from a Monte Carlo calculation \({ }^{9}\) for the \(r^{-4}\) potential under the same thermodynamic conditions.

\section*{Chapter 11 Elliot and Lira}

\section*{Margulis one-parameter Model}
\[
\begin{aligned}
& \frac{G^{E}}{R T}=A_{12} x_{1} x_{2} \\
& \ln \gamma_{i}=A_{12}\left(1-x_{i}\right)^{2}
\end{aligned}
\]
Hildebrand Model
\[
\Delta_{\operatorname{mix}}^{\mathrm{exc}} G_{\mathrm{m}}=x_{\mathrm{A}} x_{\mathrm{B}} \Omega_{\mathrm{AB}}
\]

\section*{Margulis acid-base Model}
acidity parameter, \(\alpha\), and basicity parameter, \(\beta\).


(b)

(c)

Figure 11.7. Observations about complexation. (a) A mixture of acid with base suggests favorable interactions, as in acetone + chloroform. (b) Hydrogen bonding leads to unfavorable interactions when one component associates strongly and the other is inert, as in isooctane + water. (c) Hydrogen bonding solutions can also be ideal solutions if both components have similar acidity and basicity, as in methanol + ethanol.
\[
A_{12}=\left(\alpha_{2}-\alpha_{1}\right)\left(\beta_{2}-\beta_{1}\right)\left(V_{1}+V_{2}\right) /(4 R T)
\]

Table 11.1. Acidity ( \(\alpha\) ) and Basicity ( \(\beta\) ) Parameters in \(\left(\mathrm{J} / \mathrm{cm}^{3}\right)^{1 / 2}\) and Molar Volumes ( \(\mathrm{cm}^{3} / \mathrm{mol}\) ) for Various Substances as liquids at \(298 \mathrm{~K}^{\mathbf{a}}\)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Compound } & \(\alpha\) & \(\beta\) & \(V^{L}\) \\
\hline \hline Acetone & 0 & 11.14 & 73.4 \\
\hline Benzene & 0.63 & 2.24 & 89.7 \\
\hline Chloroform & 5.80 & 0.12 & 80.5 \\
\hline Ethanol & 12.58 & 13.29 & 58.2 \\
\hline\(n\)-Hexane & 0 & 0 & 130.3 \\
\hline Isooctane & 0 & 0 & 162.9 \\
\hline Isopropanol & 9.23 & 11.86 & 76.8 \\
\hline Methanol & 17.43 & 14.49 & 40.5 \\
\hline MEK & 0 & 9.70 & 90.1 \\
\hline Water & 50.13 & 15.06 & 18.0 \\
\hline
\end{tabular}

\section*{Course Summary}

\section*{X. Thermodynamics and Materials Modeling:}

Quantum mechanics (ab initio method, electronic wave functions, nuclei don't move);
Density functional theory (Minimize \(E(\rho)\) as a function of \(\rho(r)\) );
Molecular dynamics modeling (potential fields between atoms);
Mesoscale models (coarse graining; short range interaction potentials);
Dissipative particle dynamics (DPD);
Monte Carlo Metropolis method;
Ising model;
Packages to do materials simulations of different types: LAMMPS; HOOMD-blue; ESPResSo; etc.
Free servers for simulations from Google: Colaboratory


Figure 11.1

\section*{Quantum mechanical/ab initio methods}
1) Electronic wavefunction is independent of the nuclei since electrons are much smaller and move much faster: Born Oppenheimer Approximation
2) Solve the Schrodinger equation
\[
\hat{H} \Psi=E \Psi
\]

Hamiltonian in atomic units:
\[
\hat{H}=-\frac{1}{2} \sum_{i} \nabla_{i}^{2}-\sum_{i} \sum_{\alpha} \frac{Z_{\alpha}}{\left|\boldsymbol{r}_{i}-\boldsymbol{d}_{\alpha}\right|}+\sum_{i} \sum_{j>1} \frac{1}{\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|}+\sum_{\alpha} \sum_{\beta>\alpha} \frac{Z_{\alpha} Z_{\beta}}{\left|\boldsymbol{d}_{\beta}-\boldsymbol{d}_{\alpha}\right|},
\]
\(r_{i}\) electron positions; \(d_{\alpha}\) nuclear positions, \(Z_{\alpha}\) nuclear charge
Kinetic Energy - e- nuc. attraction \(+\mathrm{e}^{-} \mathrm{e}^{-}\)repulsion + Nuc. Nuc. repulsion
3) Solve approximately since true wave function can't be found directly. Compare proposed function results with data. Variational Principle: lowest energy wins.
\[
E=\frac{\int \Psi^{*} \hat{H} \Psi \mathrm{~d} \tau}{\int \Psi * \Psi \mathrm{~d} \tau}
\]
4) Obey Pauli exclusion principle.

\section*{Density functional theory}
1) Ground state can be obtained through minimization of \(E(\rho)\) of \(\rho(r)\)
2) Parallel non-interacting system (NIS)
\[
\rho(\boldsymbol{r})=\sum_{i=1}^{N}\left|\psi_{i}(\boldsymbol{r})\right|^{2}
\]
3) Write the energy functional as
\[
\begin{aligned}
E[\rho]= & T_{\mathrm{S}}[\rho]+V_{\mathrm{nuc}}[\rho]+J[\rho]+E_{\mathrm{xc}}[\rho] \\
= & -\frac{1}{2} \sum_{i=1}^{N} \int \psi_{i}^{*}(\boldsymbol{r}) \nabla^{2} \psi_{i}(\boldsymbol{r}) \mathrm{d} \boldsymbol{r}-\sum_{\alpha} \int \rho(\boldsymbol{r}) \frac{Z_{\alpha}}{\left|\boldsymbol{r}-\boldsymbol{d}_{\alpha}\right|} \mathrm{d} \boldsymbol{r} \\
& +\frac{1}{2} \iint \frac{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \mathrm{d} \mathbf{r} \mathrm{~d} \mathbf{r}^{\prime}+E_{\mathrm{xc}}[\rho]
\end{aligned}
\]

KE of NIS + \(\mathrm{e}^{-}\)nuc. int. + Coulomb + exchange correlation energy
4) Minimize \(E[\rho]\) to obtain wave functions then iterate to obtain the ground
state density and energy

\section*{Molecular Dynamics}
1) Generate initial condition with particles identified by position and velocity
2) Calculate the force on each particle using potentials
3) Forces (accelerations) remain constant for a time step, position and velocity change
\[
\begin{aligned}
v_{i}(t+\Delta t / 2) & =v_{i}(t-\Delta t / 2)+\frac{f_{i}}{m_{i}} \Delta t \\
r_{i}(t+\Delta t) & =r_{i}(t)+v_{i}(t+\Delta t / 2) \Delta t
\end{aligned}
\]
4) Repeat 3) until temperature is constant
\[
\frac{3}{2} N k_{\mathrm{B}} T=\frac{1}{2} \sum_{i} m_{i} \mathrm{v}_{i}^{2}
\]
5) After steady state record velocities and positions so that \(\left\langle r^{2}\right\rangle=6 D t\) is found Time calculation is on the order of nanoseconds.

Neither Monte Carlo nor Molecular Dynamics can calculate the free energy since they ignore large energy regions of phase space
They can calculate differences in free energy for phase diagram construction

\section*{Mesoscale Phenomena and Models}

Due to wide range of characteristic lengths - times, several simulation methods that describe length and time scales have been developed:


\section*{Dissipative Particle Dynamics (DPD)}


\section*{Monte Carlo/Metropolis Method}

\section*{Periodic Boundary Conditions}

Fix T, V, N
\[
\langle Q\rangle=\int Q(Z) P(Z) \mathrm{d} Z \quad P(Z)=\frac{\exp \left(-U(Z) / k_{\mathrm{B}} T\right)}{\int \exp \left(-U(Z) / k_{\mathrm{B}} T\right) \mathrm{d} Z} \quad \text { "Z" is a state of the system }
\]
1) Calculate \(\phi(Z)\) by molecular mechanics with potentials
2) Accept a configuration " \(Z\) " if it has a low energy relative to kT with some randomness
3) Calculate the average
\[
\langle Q\rangle=\frac{1}{M} \sum_{i=1}^{M} Q(Z)
\]
1) Start with a random configuration calculate \(\phi(Z)\)
2) Move one atom or molecule or group of molecules
3) Calculate \(\phi\left(Z^{\prime}\right)\) if lower than \(\phi(Z)\) accept
4) If higher than \(\phi(Z)\) calculate \(\exp (-\Delta \phi / k T)\) and a random number from 0 to 1
5) If higher than random number accept
6) Repeat

\section*{Dissipative Particle Dynamics (DPD)}


FIG. 1. Dissipative particles interact pair-wise with a conservative linear repulsive force, and a Brownian dashpot made of a friction force that reduces the relative velocity between the particles and a stochastic force that gives kicks of equal size and opposite directions to the particles. These forces vanish beyond a cutoff radius \(r_{c}\).

\section*{Course Summary}

\section*{XI. Experimental Thermodynamics}

Calorimetry
Differential Scanning Calorimetry
Modulated DSC
Microcalorimetry
Differential Thermal Analysis
Thermal Gravimetric Analysis
Bomb Calorimetry/Combustion Calorimetry
Didn't cover the other 25 techniques (no time)

\section*{Course Summary}
I. Introduction
II. Single component systems
III. Solutions
IV. Phase diagrams
V. Phase stability
VI. Surfaces
VII. Heat of formation
VIII. Heat capacity
IX. Solution models and equations of state
X. Thermodynamics and materials modeling
XI. Experimental methods```

